Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:To investigate the TVA diet's effect on mouse gut microbiome, we fed C57/BL6 mice with TVA diet or CON diet for 18 days We then collected feces of the mice and performed 16S ribosomal RNA (rRNA) sequencing.
Project description:Deep sequencing of mRNA from 6 organs of yak (Bos grunniens) Analysis of ploy(A)+ RNA of brain,heart,liver,lung,spleen, and stomach of yak (Bos grunniens)
Project description:To compare the similarities and differences in species diversity of the gut microbiota between the patients with melasma and healthy subjects. The feces were collected for 16S rRNA sequencing analysis of the gut microbiota.
Project description:To examine potential changes of the intestinal microbiota in mice caused by repeated mild stress, we profiled bacteria and fungi in the mouse feces by sequencing the 16s v3v4 region and the ITS1-2 region.
Project description:Vitiligo is a common autoimmune skin disorder. We constructed an induced vitiligo mouse model and performed bulk-RNA sequencing on the skin and 16S rRNA sequencing of feces from vitiligo mice and uninduced mice. Next, we performed skin bulk-RNA sequencing after treatment using ABX. Lastly, we subjected gut microbe-related metabolite hippuric acid to control mice and performed bulk-RNA sequencing on the skin to observe oxidative stress-related gene expression changes.
Project description:To address the role of gut microbiota in the development of paclitaxel-induced peripheral neuropathy (PIPN), we performed 16S rRNA sequencing analysis of feces samples at 14 days and 28 days after the initiation of paclitaxel or vehicle injections.
Project description:Emerging data has highlighted the importance of short-chain fatty acids (SCFAs), particularly butyrate, in regulating ruminal homeostasis in vivo isolated epithelial cells. However, little is known about other SCFAs like acetate or propionate, and the interaction between rumen microbes and epithelial immunity are rarely reported. Here, we firstly combined infusion of three SCFAs, to study their different roles in ruminal development, antioxidant capacity, barrier functions, and immunity, as well as cross-talk with ruminal microbiome (16S rRNA sequencing data of rumen digesta) and derived transcriptome (RNA-Seq) and metabolism using an in vivo goat model.