Project description:Orb-weaving spiders use a highly strong, sticky and elastic web to catch their prey. These web properties alone would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets in the web, which current research is revealing. Here, we provide strong proteotranscriptomic evidence for the presence of toxin/neurotoxin-like proteins, defensins and proteolytic enzymes on the web silk from Nephila clavipes spider. The results from quantitative-based transcriptomics and proteomic approaches showed that silk-producing glands produce an extensive repertoire of toxin/neurotoxin-like proteins, similar to those already reported in spider venoms. Meanwhile, the insect toxicity results demonstrated that these toxic components can be lethal and/or paralytic chemical weapons used for prey capture on the web; and the presence of fatty acids in the web may be responsible mechanism for open the way to the web-toxins for accessing the interior of prey's body, as showed here. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among two spider groups - Araneomorphae and Mygalomorphae; and the findings showed protein sequences similar to toxins found in the taxa Scorpiones and Hymenoptera in addition to Araneae. Overall, these data represent a valuable resource to further investigate other spider web toxin systems; these data also suggest that N. clavipes web is not a passive mechanical trap for prey capture, but it exerts an active role in prey paralysis/killing using a series of neurotoxins.
Project description:Spider silk proteins are synthesized in the silk-producing glands, where the spidroins are produced, stored and processed into a solid fiber from a crystalline liquid solution. Despite great interest in the spider silk properties, that make this material suitable for biomedical and biotechnological applications, the mechanism of formation and spinning of the silk fibers has not been fully elucidated; and no combination of proteomic and transcriptomic study has been carried out so far in the spider silk-producing glands. Nephila clavipes is an attractive orb-web spider to investigate the spinning process of silk production, given the properties of strength, elasticity and biocompatibility of their silk fibers. Thus, considering that the combination of proteomic and transcriptomic analysis may reveal an extensive repertoire of novel proteins involved in the silk spinning process, and in order to facilitate and enable proteomics in this non-model organism, the current study aims to construct a high quality reference mRNA-derived protein database that could be used to identify tissue specific expression patterns in spider silk glands. Next-generation sequencing has offered a powerful and cost-efficient technique for the generation of transcriptomic datasets in non-model species using diverse platforms such as the Illumina HiSeq, Roche 454, Pacific Biosystems, and Applied Biosystems SOLiD; In the current study, the Illumina HiSeq 2000 platform will be used to generate a N. clavipes spider silk glands transcriptome-based protein database. The transcriptome data generated in this study will provide a comprehensive and valuable genomic resource for future research of the group of spider silk-producing glands, in order to improve our understanding of the overall mechanism of action involved in production, secretion, storage, transport, protection and conformational changes of spidroins during the spinning process, and prey capture; and the results may be relevant for scientists in material Science, biology, biochemistry, and environmental scientists.
Project description:The increasing application of RNA-seq to study non-model species demands easy-to-use and efficient bioinformatics tools to help researchers quickly uncover biological and functional insights. We developed ExpressAnalyst (www.expressanalyst.ca), a web-based tool for processing, analyzing, and interpreting RNA-seq data from any eukaryotic species. ExpressAnalyst contains a series of modules that enable raw data processing and annotation of FASTQ files, and statistical and functional analysis of counts tables and gene lists. All modules are integrated with EcoOmicsDB, an ortholog database that enables comprehensive analysis for species without a reference transcriptome. By coupling ultra-fast read mapping algorithms with high-resolution ortholog databases through a user-friendly web interface, ExpressAnalyst enables researchers to obtain global expression profiles and gene-level insights from raw RNA-seq reads within 24 hours. Here, we present ExpressAnalyst and demonstrate its utility with a case study of RNA-seq data from multiple non-model salamander species, including two that do not have a reference transcriptome.