Project description:Single-molecule read technologies allow for detection of epigenomic base modifications during routine sequencing by analysis of kinetic data during the reaction, including the duration between base incorporations at the elongation site (the "inter-pulse duration.") Methylome data associated with a closed de novo bacterial genome of Salmonella enterica subsp. enterica serovar Javiana str. CFSAN001992 was produced and submitted to the Gene Expression Omnibus.
Project description:Single-molecule read technologies allow for detection of epigenomic base modifications during routine sequencing by analysis of kinetic data during the reaction, including the duration between base incorporations at the elongation site (the "inter-pulse duration.") Methylome data associated with a closed de novo bacterial genome of Salmonella enterica subsp. enterica serovar Javiana str. CFSAN001992 was produced and submitted to the Gene Expression Omnibus. Single-sample sequencing and base modification detection of cultured isolate of a foodborne pathogen.
Project description:RNA extracted from representative isolates of each serovar grown to late exponential phase in Luria-Bertani broth showed that transcript abundances of core genes were significantly higher (p < 0.05) than those of accessory genes for all three serovars. Inter-serovar comparisons demonstrated higher transcript abundances for genes related to vitamin B12 biosynthesis, and ethanolamine and 1,2-propanediol utilization in S. Cerro compared to Javiana and Typhimurium, while genes in Salmonella Pathogenicity Island (SPI) 1 had significantly higher transcript abundances in S. Javiana and S. Typhimurium.
Project description:To investigate the extent to which macrophages respond to Salmonella infection, researchers infected RAW 264.7 macrophages with Salmonella enterica serotype Typhimurium and analyzed macrophage proteins at various time points following infection by using a global proteomic approach.
Project description:The non-typhoidal Salmonella enterica serotype Heidelberg is a major foodborne pathogen primarily transmitted to humans through contaminated poultry products. Current control measures emphasize novel approaches to mitigate Salmonella Heidelberg colonization in poultry and the contamination of poultry products, thereby reducing its transmission to humans. This study highlight that commensal E. coli 47-1826 can potentially be used to control of S. Heidelberg 18-9079 in poultry
Project description:To determine the impact of a low Mg(2+)/pH defined growth medium (MgM) on the proteome of Salmonella enterica serotype Typhimurium, researchers cultured S. Typhimurium cells in the medium under two different conditions termed MgM Shock and MgM Dilution and then comparatively analyzed the bacterial cells harvested from these conditions by a global proteomic approach.
Project description:We have performed microarray hybridization studies on forty clinical isolates from twelve common serovars within Salmonella enterica subspecies I (sspI) to identify the conserved gene pool present.
Project description:Salmonella enterica variants exhibit diverse host adaptation, outcome of infection, and associated risk to humans. Analysis of 6,335 Salmonella isolates recovered from integrated human-animal surveillance in Emilia Romagna region, Northern Italy, (human population ca 4,500,000), from 2012 to 2017 showed that Salmonella enterica serovar Derby constitutes a swine associated serovar in this epidemiological context while representing also a significant causative agent of human infections. Comparison of the distribution of subtypes of Salmonella Derby from human and swine identified isolates with a distinct PFGE profile that were significantly less isolated in human infections than in swine infections compared to all other subtypes. Here we show that isolates with this PFGE profile form a distinct phylogenetic sub-clade within Salmonella Derby and exhibit a marked reduction in invasion and replication in human epithelial cells but a relatively small reduction in swine epithelial cells, in line with the epidemiological evidence. A single missense mutation in hilD, that encodes the master-regulator of the Salmonella Pathogenicity Island 1 (SPI-1), was identified in this lineage of Salmonella Derby. Since SPI-1 encodes for a primary system of Salmonella invasion into epithelial cells, we investigated the role of the observed mutation in detail. We demonstrated that the missense mutation results in a loss of function of HilD that accounts for the reduced invasion and replication in human epithelial cells while showing a relatively small impact on the interaction with swine cells. This finding is suggestive of a mechanism of invasion alternative to SPI-1 in the Salmonella-swine combination
2020-12-16 | GSE142220 | GEO
Project description:Whole Genome Analysis of Salmonella enterica Serotype Enteritidis Isolates