Project description:We developed eight Genome-scale Metabolic Models for the microbiome of the sponge Stylissa sp. We also modelled metabolic interactions within the network of the eight-species microbiome by introducing different nutrients (such as HT, laurate, and a combination of both).
Project description:Marine sponges are essential for coral reefs to thrive and harbour a diverse microbiome that is thought to contribute to host health. Although the overall function of sponge symbionts has been increasingly described, in-depth characterisation of each taxa remains challenging, with many sponge species hosting up to 3,000 distinct microbial species. Recently, the sponge Ianthella basta has emerged as a model organism for symbiosis research, hosting only three dominant symbionts: a Thaumarchaeotum, a Gammaproteobacterium, and an Alphaproteobacterium and a range of other minor taxa. Here, we retrieved metagenome assembled genomes (MAGs) for >90% of I. basta’s microbial community which allowed us to make a complete metabolic reconstruction of the sponge’s microbiome, identifying metabolic complementarity between microbes, as well as the importance of symbionts present in low abundance. We also mined the metagenomes for putative viral sequences, highlighting the contribution of viruses to the overall metabolism of the sponge, and complement this data with metaproteomic sequencing to identify active metabolic pathways in both prokaryotes and viruses. This data now allows us to use I. basta as a model organism for studying host-microbe interactions and provides a basis for future (genomic) manipulative experiments.
Project description:Human milk oligosaccharides (HMOs) are highly diverse complex carbohydrates secreted in human milk. HMOs are indigestible by the infant and instead are metabolized by bifidobacteria in the infant gut microbiome to produce molecules that promote infant health and development. 2´fucosyllactose (2´FL) is an abundant HMO and is utilized by Bifidobacterium longum subsp. infantis, a predominant member of the infant gut microbiome. Currently, there is not a scientific consensus on how or if bifidobacteria metabolize the fucose portion of 2´FL or free fucose. This proteomic analysis was conducted in order to characterize the metabolic pathway by which B. infantis utilizes fucose.
Project description:Investigation of microbial community composition in mouse models using an intestinal epithial-specific and inducible VilCreERT2-mediated conditional knockout of Jup under basal conditions and in acute dextran-sodium sulfate (DSS)-induced colitis We investigated the gut microbiome composition in a dextran sulfate sodium (DSS) colitis model using Jupfl/fl and iVilCreERT2Jupfl/fl mice. Fecal samples were collected after DSS treatment, and 16S rRNA sequencing was employed to analyze microbial communities. Our findings revealed no significant differences in microbial profiles between Jupfl/fl and iVilCreERT2Jupfl/fl under DSS treatment.
Project description:Villin-Cre+ Lsd1fl/fl (cKO) mice display an immature intestinal epithelium characterized by an incomplete differentiation of enterocytes and secretory lineages, reduced number of goblet cells and a complete loss of Paneth cells. This experiment aims to elucidate the differences in stool microbial composition derived from WT (Villin-Cre- Lsd1fl/fl) and cKO mice both in adult (2-month-old) and neonatal (14 days postpartum P14) stages. Different timepoints are crucial to understand the role of intestinal maturation in microbiome composition since said maturation is dependent on time-dependent external cues happening at P14-21 (weaning and transition from milk to solid foods).