Project description:Rhesus macaques vaccinated by rhesus cytomegalovirus vectors expressing simian immunodeficiency virus proteins (RhCMV/SIV) activate gene expression signature associated with IL15. To examine the gene expression signature activated by IL15, we performed longitudinal examinations of rhesus macaques during IL15 treament.
2021-06-28 | GSE160577 | GEO
Project description:RhCMV/SIV strain 68-1 vector vaccination in rhesus macaques
| PRJNA1344437 | ENA
Project description:RhCMV/SIV strain 68-1 vector vaccination in RhCMV+ and RhCMV- rhesus macaques
Project description:Strain 68-1–derived Rhesus Cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) proteins (RhCMV/SIV) are able to elicit and maintain cellular immune responses that stringently control and subsequently clear a mucosal challenge with highly pathogenic SIV in 50-60% of vaccinated rhesus monkeys (RMs). Here, we utilize whole blood transcriptomic profiling to identify host responses correlated to RhCMV/SIV efficacy.
Project description:The 68-1 rhesus cytomegalovirus (RhCMV) vector which expresses Simian Immunodeficiency Virus (SIV) genes (Gag/Tat/Nef/5-Pol) is effective in controlling and clearing SIV in rhesus macaques and the human ortholog vector is a vaccine candidate for the prevention of HIV. Currently the RhCMV/SIV vaccine is only effective in ~55% (referred to as protected animals) of Rhesus Macaques. A previous study by Barrenäs et al., 2021, showed that significant gene expression changes in a key set of IL-15 linked genes was correlated with a protection outcome. To further our understanding of the transcriptomic state if cells in protected animals and mechanisms of protection induced by the RhCMV vaccine we performed single cell RNA-sequencing on PBMCs from protected, non-protected and unvaccinated animals at longitudinal time points post SIV challenge. We identified monocytes, CD8 T cells and NK cells were primarily responsible for expression of genes in the IL-15 enriched protective signature. Myeloid cells were transcriptionally distinct 1) from all other cell types, 2) between nonprotected and protected vaccinated RMs and 3) between protected and unvaccinated SIV-infected animals. Specifically, transcriptomics indicated that myeloid cells were more activated and mature in protected animals by the vaccine at pre-challenge and post-challenge time points. This suggests that the transcriptional state of myeloid cells is essential in eliciting a protection outcome and could be used to determine whether an animal will be protected after vaccination.
Project description:We investigated the effects of rhesus CMV (RhCMV) on composition and function of the immune system in young macaques. Within months of infection, RhCMV was associated with impressive changes in antigen presenting cells, T cells, and NK cells—and marked expansion of innate-memory CD8+ T cells. These cells express high levels of NKG2A/C and the IL-2- and IL-15-receptor beta chain, CD122. IL-15 was sufficient to drive differentiation of the cells in vitro and in vivo. Expanded NKG2A/C+CD122+CD8+ T cells in RhCMV-infected macaques, but not their NKG2-negative counterparts, were endowed with cytotoxicity against class I-deficient K562 targets and prompt IFN-ɣ production in response to stimulation with IL-12 and IL-18. Because RhCMV clone 68-1 forms the viral backbone of RhCMV-vectored SIV vaccines, we also investigated immune changes following administration of RhCMV 68-1-vectored SIV vaccines. These vaccines led to impressive expansion of NKG2A/C+CD8+ T cells with capacity to inhibit SIV replication ex vivo. Thus, CMV infection and CMV-vectored vaccination drive expansion of functional innate-like CD8 cells via host IL-15 production, suggesting that innate-memory expansion could be achieved by other vaccine platforms expressing IL-15.
Project description:Cytomegalovirus (CMV) is a prevalent β-herpesvirus that persists asymptomatically in immunocompetent hosts. In people with HIV-1 (PWH), CMV is associated with HIV-1 persistence and particular inflammatory-related co-morbidities. The true causative role of CMV in HIV-associated pathologies however remains unclear given that nearly all PWH are coinfected with CMV. In this study, we examined acute phase immune and virological dynamics in cohorts of SIV-infected rhesus macaques (RMs) that were naturally seropositive or -negative for rhesus CMV (RhCMV). We observed prior to SIV, RhCMV expanded a polyclonal population of target CCR5+CD4+ T cells in gut and lymph nodes (LN) that expressed the chemotactic receptor CXCR3 and were largely not specific for RhCMV. Upon SIV infection, RhCMV+ RMs exhibited higher peak viremia and elevated levels of SIV DNA in the upper and lower intestine. Greater seeding of SIV DNA was associated with a maintenance of CCR5-expressing CD4+ T cells that were enriched within the RhCMV+ gut along a CXCR3-CXCL9 chemotactic axis. Overall, the data suggest that RhCMV can promote SIV susceptibility within a diverse, polyclonal pool of CD4 T cells that are not entirely RhCMV-specific.
Project description:Immunization of macaques with simian immunodeficiency virus with deletions in nef (SIV?nef) has been shown to elicit protective immunity to infection by pathogenic SIV, yet our understanding of the mechanisms that orchestrate protection and prevent pathogenesis remains limited. In the study, we utilize whole-genome transcriptional profiling to reveal molecular signatures of protective immunity in circulating CD8+ T cells of rhesus macaques vaccinated with SIVmac239?nef and challenged with pathogenic SIVmac251. Microarrays were used to characterize changes in gene expression in blood CD8+ T cells that occur following vaccination of rhesus macaques with attenuated SIV?nef and subsequent challenge with pathogenic SIVmac251, in comparison to corresponding changes in healthy controls and unvaccinated animals infected with pathogenic SIVmac251 CD8+ T cells were isolated by magnetic beads from the blood of healthy uninfected macaques, macaques vaccinated with SIV?nef, and unvaccinated controls infected with SIVmac251, and used for RNA extraction and hybridization on Affymetrix microarrays. Blood samples from vaccinated animals were collected prior to vaccination, at 3, 20, and 40 weeks following vaccination. After the 40 week vaccination period, macaques were challenged with SIVmac251, and blood was again collected at 3 weeks following challenge. Blood was collected from the unvaccinated controls at 3 weeks following infection with SIVmac251
Project description:The primary objective of this study was to evaluate response to a SIV DNA-based vaccine that was adminstered via vivo electroporation (EP) in rhesus macaques to further understand the molecular correlates of protection against SIV. In this study, rhesus macaques were immunized with a DNA vaccine including individual plasmids encoding SIV gag, env, and pol alone, or in combination with a molecular adjuvant, plasmid DNA expressing the chemokine ligand 5 (RANTES), followed by EP. At eight month post-vaccination, animals were challenged with SIV. Standard immunological assays, flow-based activation analysis without ex vivo restimulation and high-throughput gene expression analysis were performed to determine the host response to each vaccine regimen. The overall study was designed to evaluate the response to a SIV-DNA vaccination administered to animals via intramuscular electroporation. Chinese rhesus macaques were divided into three treatment groups (n=6 animals per group): Control (no vaccination), DNA vaccine alone (pCSIVgag, pCSIVpol, pCSIVenv), DNA vaccine with RANTES adjuvant (pCSIVgag, pCSIVpol, pCSIVenv, pmacRANTES). Eight months following the last vaccination, animals were infected with 25 MID of SIVmac251 and response to infection was monitored. RNA for microarray analysis was isolated from fresh PBMCs that were isolated from individual animals and treated overnight with a pool of overlapping SIV pol peptides or mock treated. Samples for microarray analysis were taken longitudinally at 8 months post-vaccination (pre-SIV challenge; biological n=5-6 per group for each treatment; technical n=2 for each sample) and at day 10 post-SIV challenge (n=5-6 per group for each treatment; technical n=2 for each sample).
Project description:Recombinant RhCMV was created to study super-infection of Rhesus macaques. These viruses (RhCMV Î178;RhCMV Î182-189;RhCMV Î178Î182-189) were co-hybridized with a wild-type BAC-derived RhCMV to a RhCMV tiling array to ensure that there were no additional mutations beyond the intended deleted regions. Comparison of wild-type BAC-derived RhCMV Î178, RhCMV Î182-189, and RhCMV Î178Î182-189