Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome. The results were used to demonstarte the usefulness of applying HuMiChip to human microbiome studies.
Project description:The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr-/- mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including interleukin-6, tumor necrosis factor-α and interleukin-1β), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool for deciphering the chemical biology of the gut microbiome and might advance microbiome-targeted therapeutics.
Project description:The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr-/- mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including interleukin-6, tumor necrosis factor-α and interleukin-1β), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool for deciphering the chemical biology of the gut microbiome and might advance microbiome-targeted therapeutics.
Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome.
Project description:Head and neck cancers are a complex malignancy comprising multiple anatomical sites, with cancer of the oral cavity ranking among the deadliest and most disfiguring cancers globally. Oral cancer (OC) constitutes a subset of head and neck cancer cases, presenting primarily as tobacco- and alcohol-associated oral squamous cell carcinoma (OSCC), with a 5-year survival rate of ~65%, partly due to the lack of early detection and effective treatments. OSCC arises from premalignant lesions (PMLs) in the oral cavity through a multi-step series of clinical and histopathological stages, including varying degrees of epithelial dysplasia. To gain insights into the molecular mechanisms associated with the progression of PMLs to OSCC, we profiled the whole transcriptome of 66 human PMLs comprising leukoplakia with dysplasia and hyperkeratosis non-reactive (HkNR) pathologies, alongside healthy controls and OSCC. Our data revealed that PMLs were enriched in gene signatures associated with cellular plasticity, such as partial EMT (p-EMT) phenotypes, and with immune response. Integrated analyses of the host transcriptome and microbiome further highlighted a significant association between differential microbial abundance and PML pathway activity, suggesting a contribution of the oral microbiome towards PML evolution to OSCC. Collectively, this study reveals molecular processes associated with PML progression that may help early diagnosis and disease interception at an early stage.
Project description:Abstract: Many mouse models of neurological disease use the tetracycline transactivator (tTA) system to control transgene expression by oral treatment with the broad-spectrum antibiotic doxycycline. Antibiotic treatment used for transgene control might have undesirable systemic effects, including the potential to affect immune responses in the brain via changes in the gut microbiome. Recent work has shown that an antibiotic cocktail to perturb the gut microbiome can suppress microglial reactivity to brain amyloidosis in transgenic mouse models of Alzheimer's disease based on controlled overexpression of the amyloid precursor protein (APP). Here we assessed the impact of chronic low dose doxycycline on gut microbiome diversity and neuroimmune response to systemic LPS challenge in a tTA-regulated model of Alzheimer's amyloidosis. We show that doxycycline decreased microbiome diversity in both APP transgenic and wild-type mice and that these changes persisted long after drug withdrawal. Despite this change in microbiome composition, dox treatment had minimal effect on transcriptional signatures in the brain, both at baseline and following acute LPS challenge. Our findings suggest that central neuroinflammatory responses may be less affected by dox at doses needed for transgene control than by antibiotic cocktail at doses used for microbiome manipulation.
Project description:The objectives of this study were to establish a microbiome profile for oral epithelial dysplasia using archival lesion swab samples to characterize the community variations and the functional potential of the microbiome using 16S rRNA gene sequencing
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.