Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method.
Project description:Root exudates contain specialised metabolites that affect the plant’s root microbiome. How host-specific microbes cope with these bioactive compounds, and how this ability shapes root microbiomes, remains largely unknown. We investigated how maize root bacteria metabolise benzoxazinoids, the main specialised metabolites of maize. Diverse and abundant bacteria metabolised the major compound in the maize rhizosphere MBOA and formed AMPO. AMPO forming bacteria are enriched in the rhizosphere of benzoxazinoid-producing maize and can use MBOA as carbon source. We identified a novel gene cluster associated with AMPO formation in microbacteria. The first gene in this cluster, bxdA encodes a lactonase that converts MBOA to AMPO in vitro. A deletion mutant of the homologous bxdA genes in the genus Sphingobium, does not form AMPO nor is it able to use MBOA as a carbon source. BxdA was identified in different genera of maize root bacteria. Here we show that plant-specialised metabolites select for metabolisation-competent root bacteria. BxdA represents a novel benzoxazinoid metabolisation gene whose carriers successfully colonize the maize rhizosphere and thereby shape the plant’s chemical environmental footprint
Project description:We present metaproteome data from maize rhizosphere from sodic soil. Isolation of proteome from maize rhizosphere collected from Experimental Farm, ICAR-IISS, Mau, India was done with the standardized protocol at our laboratory and metaproteome analysis was done with the standardized pipepline. In total 696 proteins with different functions representing 245 genus and 395 species were identified. The proteome data provides direct evidence on the biological processes in soil ecosystem and is the first reported reference data from maize rhizosphere.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method. Triplicate samples were taken for both rhizosphere and bulk soil, in which each individual sample was a pool of four plants or soil cores. To determine the abundance of functional genes in the rhizosphere and bulk soils, GeoChip 3.0 was used.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method. Triplicate samples were taken for both rhizosphere and bulk soil, in which each individual sample was a pool of four plants or soil cores. To determine the abundance of functional genes in the rhizosphere and bulk soils, GeoChip 3.0 was used.
Project description:ISR is the initiation of a beneficial association by certain fungi in the rhizosphere followed by the establishment of belowground-aboveground signaling communication may result in the induction of heightened host resistance to foliar and stem pathogens, as well as insect pests.
Project description:<p><strong>BACKGROUND:</strong> The coevolution and interaction between plants and microorganisms have long been a subject of significant research interest. Dark septate endophytes (DSE) have garnered great attention in contemporary research due to their functional diversity, in vitro cultivation ability, and ability to establish symbiotic associations with host plants. In the present study, three DSE strains, namely <em>Acrocalymma vagum</em>, <em>Zopfiella marina</em>, and <em>Phoma herbarum</em>, which were obtained from the roots of <em>Astragalus membranaceus</em>, were introduced into maize plants through inoculation. We evaluated the effects of DSE inoculation on maize growth and root secretion activity through a multi omics methods, and proposed mechanisms for 'internal pathways' and 'external pathways'.</p><p><strong>RESULTS:</strong> The findings indicated that A. vagum exhibited superior growth-promoting ability on maize compared to <em>Z. marina</em> and <em>P. herbarum</em>.GO and KEGG enrichment analysis found that <em>A. vagum</em> inoculation resulted in significant enrichment of differentially expressed genes in annotation functions related to hormone regulation and lipid metabolism. A. vagum inoculation revealed that the gene pathways involved in plant hormone signaling and plant pathogen interactions play a crucial role in promoting host growth, and <em>A. vagum</em> inoculation group exhibited the highest number of differentially expressed genes, the most intricate protein-protein interaction (PPI) model, and the most pronounced relationship between differentially expressed genes. After the inoculation of <em>A.vagum</em>, the levels of salicylic acid, zeatin, and IAA in maize plants significantly increased. Additionally, the diversity and abundance of endophytic fungi, as well as the proportion of harmful bacteria and beneficial fungi, had significantly increased. Compared with <em>Z. marina</em> and <em>P. herbarum</em>, the net photosynthetic rate (Pn) and stomatal conductance (Gs) of <em>A.vagum</em> inoculated plants significantly increased. Inoculation with <em>A.vagum</em> could enhance the ability of corn roots to secrete lipids, sugars, and amino acids, resulted in a notable augmentation of beneficial bacteria and fungi, accompanied by a significant reduction in the proportion of harmful bacteria in the rhizosphere soil, such as <em>Fusarium solani</em> and <em>Fusarium lacertarum</em>, exhibited significant inhibition, whereas <em>Bacillus niabensis</em> and <em>Bacillus nealsonii</em> demonstrated enrichment trends. Soil pH, organic matter, available potassium content, acid phosphatase, alkaline phosphatase and urease activity exhibited significant increases following the inoculation of <em>A. vagum</em>. Variance decomposition and structural equation modeling (SEM) analysis indicated that the 'internal pathway', maize growth is mainly influenced by the interaction of endogenous hormones, endophytic microorganisms, and photosynthetic parameters, whereas within the 'external pathway', the interaction between soil microorganisms and soil physicochemical properties exerted a dominant influence. Compared with the <em>Z. marina</em> and <em>P. herbarum</em> inoculation, <em>A. vagum</em> inoculation showed a more significant impact on maize growth, both in terms of 'internal pathway' and 'external pathway', in terms of pathway level and quantity.</p><p><strong>CONCLUSIONS:</strong> These findings provide a new perspective for understanding the potential mechanisms of 'microbe-plant' interactions and also contribute to the exploration of targeted functional microorganisms that promote growth and stress resistance.</p>
Project description:Iron deficiency is a yield-limiting factor and a worldwide problem for crop production in many agricultural regions, particularly in aerobic and calcareous soils. Graminaceous species, like maize, improve Fe acquisition through the release of phytosiderophores (PS) into the rhizosphere and the following uptake of Fe(III)-PS complexes through specific transporters. Transcriptional profile obtained by roots 12-d-old maize plants under Fe starvation for 1 week (Fe-deficient; 19-d-old plants) were compared with the transcriptional profile obtained by roots of 12-d-old maize plants grown in a nutrient solution containing 100 μM Fe-EDTA for 1 week (Fe-sufficient; 19-d-old plants).