Project description:Klebsiella pneumoniae is an arising threat to human health. However, host immune responses in response to this bacterium remain to be elucidated. The goal of this study was to identify the dominant host immune responses associated with Klebsiella pneumoniae pulmonary infection. Pulmonary mRNA profiles of 6-8-weeks-old BALB/c mice infected with/without Klebsiella pneumoniae were generated by deep sequencing using Illumina Novaseq 6000. qRT–PCR validation was performed using SYBR Green assays. Using KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, we identified several immune associated pathways, including complement and coagulation cascades, Toll-like receptor signaling pathway, Rap1 signaling pathway, chemokine signaling pathway, TNF signaling pathway, phagosome and NOD-like receptor signaling pathway, were involved in Klebsiella pneumoniae pulmonary infection. Using ICEPOP (Immune CEll POPulation) analysis, we found that several cell types were involved in the host immune response to Klebsiella pneumoniae pulmonary infection, including dendritic cells, macrophages, monocytes, NK (natural killer) cells, stromal cells. Further, IL-17 chemokines were significantly increased during Klebsiella pneumoniae infection. This study provided evidence for further studying the pathogenic mechanism of Klebsiella pneumoniae pneumonia infection.
Project description:The interactions between Gram-negative respiratory pathogens and the host environment at the site of infection largely unknown. Pulmonary surfactant serves as an initial point of contact for inhaled bacteria entering the lung and is thought to contain molecular cues that aid colonization and pathogenesis. To gain insight into this ecological transition, we characterized the transcriptional responses of Pseudomonas aeruginosa PA14, Burkholderia thailandensis E264, Klebsiella pneumoniae MGH 78578, and Stenotrophomonas maltophilia K279A exposed to purified pulmonary surfactant (Survanta) through microarrays. This study provides novel insight into the interactions occurring between Gram-negative opportunistic pathogens and the host at an important infection site, and demonstrates the utility of purified lung surfactant preparations for dissecting host-lung pathogen interactions in vitro. The goal of this study was to compare the transcriptional responses of Pseudomonas aeruginosa PA14, Burkholderia thailandensis E264, Klebsiella pneumoniae MGH 78578, and Stenotrophomonas maltophilia K279A exposed to pulmonary surfactant using a custom affymetrix chip designed for their genomes. The goal of this study was to compare the transcriptional responses of Pseudomonas aeruginosa PA14, Burkholderia thailandensis E264, Klebsiella pneumoniae MGH 78578, and Stenotrophomonas maltophilia K279A exposed to pulmonary surfactant using a custom affymetrix chip designed for their genomes.
Project description:The increasing antibiotic resistance of Klebsiella pneumoniae poses a serious threat to global public health. To investigate the antibiotic resistance mechanism of Klebsiella pneumonia, we performed gene expression profiling analysis using RNA-seq data for clinical isolates of Klebsiella pneumonia, KPN16 and ATCC13883. Our results showed that mutant strain KPN16 is likely to act against the antibiotics through increased increased butanoate metabolism and lipopolysaccharide biosynthesis, and decreased transmembrane transport activity.
Project description:This SuperSeries is composed of the following subset Series: GSE35746: Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling [tiling arrays] GSE35821: Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling [TSS-Seq] Refer to individual Series
Project description:Response of Epithelial cells to the injury caused by different Klebsiella strains at different time points. K. pneumoniae strains used are: Wild type, Descapsulated mutant and LPS O-Chain mutant. Time points considered are: 4 hr, 6 hr and 10 hr
Project description:To investigate the whole-genome gene expression difference between the wild-type and capsule deletion mutant in Klebsiella pneumoniae MGH 78578. The mutants analyzed in this study are further described in Huang T.W., Stapleton J.C., Chang H.Y., Tsai S.F., Palsson B.O., Charusanti P. Capsule removal via lambda-Red knockout system perturbs biofilm formation and fimbriae extression in Klesiella pneumoniae MGH 78578 (manuscript submission) A six chip study using total RNA recovered from three separate wild-type cultures and three separate cultures of a capsule deltion mutant of Klebsiella pneumoniae MGH 78578. The capsule gene cluster (KPN_02493 to KPN_02515) was entirely removed in the capsule deletion mutant. Each chip measures the expression level of 5,305 genes from Klebsiella pneumoniae MGH 78578 and the associated five plasmids (pKPN3, pKPN4, pKPN5, pKPN6 and pKPN7) with 50-mer oligo tiling array with 30-mer spacer.