Project description:We used gene expression accompanied by physical characteristics and gill Na+/K+-ATPase activity to analyze physiological differences associated with two life history variations of juvenile fall Chinook Salmon in the Snake River basin. Subyearlings originating in the Snake River typically migrate seaward as subyearlings, whereas many subyearlings from the Clearwater River delay seaward migration during summer and complete seaward migration the following spring as yearlings. We examined gill Na+/K+-ATPase activity and gene expression of subyearlings at different times during rearing and seaward emigration. Natural-origin Snake River subyearlings rearing under an increasing photoperiod and seasonally increasing temperatures showed a typical increasing pattern of parr to smolt gill Na+/K+-ATPase activity development, which then declined into autumn. In contrast, Clearwater River subyearlings that had experienced cooler temperatures showed no pattern of increasing gill Na+/K+-ATPase activities and were not different from parr. Liver transcription of genes involved in DNA repair and binding, the cell cycle, metabolism (steroid, fatty acid and other metabolic pathways) iron homeostasis, heme and oxygen binding, the immune response, and male sexual development were enriched amongst genes differentially expressed between Snake River parr versus smolts. Gene expression results confirmed that Clearwater River subyearlings were parr-like in their physiological status. By autumn, subyearlings had low gill Na+/K+-ATPase activities despite their large size and external smolt characteristics. We suggest that environmental factors like temperature and photoperiod influence subyearling physiological status in each river that ultimately dictates juvenile life history pathways.
Project description:We used gene expression accompanied by physical characteristics and gill Na+/K+-ATPase activity to analyze physiological differences associated with two life history variations of juvenile fall Chinook Salmon in the Snake River basin. Subyearlings originating in the Snake River typically migrate seaward as subyearlings, whereas many subyearlings from the Clearwater River delay seaward migration during summer and complete seaward migration the following spring as yearlings. We examined gill Na+/K+-ATPase activity and gene expression of subyearlings at different times during rearing and seaward emigration. Natural-origin Snake River subyearlings rearing under an increasing photoperiod and seasonally increasing temperatures showed a typical increasing pattern of parr to smolt gill Na+/K+-ATPase activity development, which then declined into autumn. In contrast, Clearwater River subyearlings that had experienced cooler temperatures showed no pattern of increasing gill Na+/K+-ATPase activities and were not different from parr. Liver transcription of genes involved in DNA repair and binding, the cell cycle, metabolism (steroid, fatty acid and other metabolic pathways) iron homeostasis, heme and oxygen binding, the immune response, and male sexual development were enriched amongst genes differentially expressed between Snake River parr versus smolts. Gene expression results confirmed that Clearwater River subyearlings were parr-like in their physiological status. By autumn, subyearlings had low gill Na+/K+-ATPase activities despite their large size and external smolt characteristics. We suggest that environmental factors like temperature and photoperiod influence subyearling physiological status in each river that ultimately dictates juvenile life history pathways. Non-migrating and migrating natural subyearling fall Chinook salmon were collected from the Snake River. Non-migrating natural subyearling fall Chinook salmon were collected from the Clearwater River. Twelve fish were collected at each of four different time points for a total of 48 fish. Total RNA was extracted from the liver of each fish. Equal amounts of RNA from three fish were pooled to create four pools of RNA per time point. Each RNA pool was hybridized to an array for a total of 16 arrays with four arrays per time point.
Project description:Pyruvate fermentation pathway and energetics of Desulfovibrio alaskensis strain G20 under syntrophic coculture and fermentative monoculture conditions Expression data for Desulfovibrio alaskensis strain G20 grown in chemostats on pyruvate under respiratory conditions (sulfate-limited and pyruvate-limited monoculture, dilution rate 0.047 and 0.027 h-1), fermentative conditions (monoculture, dilution rate 0.036 h-1), and syntrophic conditions (coculture with Methanococcus maripaludis or Methanospirillum hungatei, dilution rate of 0.047 and 0.027 h-1) 2 replicates each for syntrophic coculture (M. maripaludis or M. hungatei pairing) and respiratory (sulfate- or pyruvate-limited) monoculture for both growth rates (0.027 and 0.047 h-1), and 4 replicates fermentative monoculture (gas flow rate through head space of bioreactor 10 ml/min (chemostats C91 and C93) or 1 ml/min (chemostats C92 and C94)
Project description:Expression data for Desulfovibrio alaskensis strain G20 grown on lactate in sulfate-limited monoculture and syntrophic coculture with Methanococcus maripaludis in chemostats at a high growth rate of 0.047h-1 5 replicates of coculture and 3 replicates of sulfate-limited monoculture
Project description:Pyruvate fermentation pathway and energetics of Desulfovibrio alaskensis strain G20 under syntrophic coculture and fermentative monoculture conditions Expression data for Desulfovibrio alaskensis strain G20 grown in chemostats on pyruvate under respiratory conditions (sulfate-limited and pyruvate-limited monoculture, dilution rate 0.047 and 0.027 h-1), fermentative conditions (monoculture, dilution rate 0.036 h-1), and syntrophic conditions (coculture with Methanococcus maripaludis or Methanospirillum hungatei, dilution rate of 0.047 and 0.027 h-1)
Project description:Expression data for Desulfovibrio alaskensis strain G20 grown on lactate in sulfate-limited monoculture and syntrophic coculture with Methanococcus maripaludis or Methanospirillum hungatei in chemostats at a low growth rate of 0.027h-1. 7 samples of Desulfovibrio alaskensis strain G20 grown in syntrophic coculture on lactate with either Methanococcus maripaludis (4 replicates) or Methanospirillum hungatei (3 replicates), and 5 samples of sulfate-limited monoculture growth of strain G20 on lactate.
Project description:This study aims to to compare the gene transcription profiles of endothelial cells and stem cells, when they are cultured alone or when they are cultured together. Thus there are two major questions - how do the cells differ, and how do the cells influence each other's gene expression. Thus there are 4 types of sample: endothelial cell monoculture, endothelial cell coculture, stem cells monoculture, stem cell coculture. There are also 4 biological replicates (independent experiments) leading to 16 array data files.
Project description:We performed RNA-seq on A375 melanoma cells in monoculture or after coculture with adipocytes and identified differentially expressed genes
Project description:There is a current interest in reducing the in vivo toxicity testing of nanomaterials in animals by increasing toxicity testing using in vitro cellular assays; however, toxicological results are seldom concordant between in vivo and in vitro models. This study compared global multi-walled carbon nanotube (MWCNT)-induced gene expression from human lung epithelial and microvascular endothelial cells in monoculture and coculture with gene expression from mouse lungs exposed to MWCNT. Using a cutoff of 10% false discovery rate and 1.5 fold change, we determined that there were more concordant genes (gene expression both up- or downregulated in vivo and in vitro) expressed in both cell types in coculture than in monoculture. When reduced to only those genes involved in inflammation and fibrosis, known outcomes of in vivo MWCNT exposure, there were more disease-related concordant genes expressed in coculture than monoculture. Additionally, different cellular signaling pathways are activated in response to MWCNT dependent upon culturing conditions. As coculture gene expression better correlated with in vivo gene expression, we suggest that cellular cocultures may offer enhanced in vitro models for nanoparticle risk assessment and the reduction of in vivo toxicological testing.