Project description:Data analysis is a critical part of quantitative proteomics studies in interpreting biological questions. Numerous computational tools including protein quantification, imputation, and differential expression (DE) analysis were generated in the past decade. However, searching optimized tools is still an unsolved issue. Moreover, due to the rapid development of RNA-Seq technology, a vast number of DE analysis methods are created. Applying these newly developed RNA-Seq-oriented tools to proteomics data is still a question that needs to be addressed. In order to benchmark these analysis methods, a proteomics dataset constituted the proteins derived from human, yeast, and drosophila with different ratios were generated. Based on this dataset, DE analysis tools (including array-based and RNA-Seq based), imputation algorithms, and protein quantification methods were compared and benchmarked. This study provided useful information on analyzing quantitative proteomics datasets. All the methods used in this study were integrated into Perseus which are available at https://www.maxquant.org/perseus.
Project description:The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. Deep RNA-Seq of two Brassica rapa genotypesâR500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)âusing eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. In this experiment, two pools were made, with one pool consisting of 66 samples collected from growth chamber and another pool consisting of 60 samples collected from greenhouse and field. Each pool was sequenced on eight lanes (total 16 lanes) of an Illumina Genome Analyzer (GAIIx) as 100-bp paired end reads.