Project description:Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, with ~400 million cases across the globe each year. Uropathogenic E. coli (UPEC) is the major cause of UTI and increasingly associated with antibiotic resistance. This scenario has been worsened by the emergence and spread of pandemic UPEC sequence type 131 (ST131), a multidrug-resistant clone associated with extraordinarily high rates of infection. Here, we employed transposon-directed insertion site sequencing in combination with metabolomic profiling to identify genes and biochemical pathways required for growth and survival of the UPEC ST131 reference strain EC958 in human urine (HU). We identified 24 UPEC genes required for growth in HU, which mapped to diverse pathways involving small peptide, amino acid and nucleotide metabolism, the stringent response pathway, and lipopolysaccharide (LPS) biosynthesis. We also discovered a role for UPEC resistance to fluoride during growth in HU, most likely associated with fluoridation of drinking water. Complementary NMR-based metabolomics identified changes in a range of HU metabolites following UPEC growth, the most pronounced being L-lactate, which was utilized as a carbon source via the L-lactate dehydrogenase LldD. Using a mouse UTI model with mixed competitive infection experiments, we demonstrated a role for nucleotide metabolism and the stringent response in UPEC colonization of the mouse bladder. Together, our application of multiple omics technologies combined with different infection-relevant settings has uncovered new factors required for UPEC growth in HU, thus enhancing our understanding of this pivotal step in the UPEC infection pathway.
2024-02-09 | MTBLS9131 | MetaboLights
Project description:Multidrug-resistant uropathogenic Escherichia coli causing complicated urinary tract infection in India
Project description:The antibiotic fosfomycin is widely recognized for treatment of lower urinary tract infections caused by Escherichia coli and lately gained importance as a therapeutic option to combat multidrug resistant bacteria. Still, resistance to fosfomycin frequently develops through mutations reducing its uptake. Whereas the inner membrane transport of fosfomycin has been extensively studied in E. coli, its outer membrane (OM) transport remains insufficiently understood. While evaluating minimal inhibitory concentrations in OM porin-deficient mutants, we observed that the E. coli ΔompCΔompF strain is five times more resistant to fosfomycin than the wild type and the respective single mutants. Continuous monitoring of cell lysis of porin-deficient strains in response to fosfomycin additionally indicated the relevance of LamB. Furthermore, the physiological relevance of OmpF, OmpC and LamB for fosfomycin uptake was confirmed by electrophysiological and transcriptional analysis. This study expands the knowledge of how fosfomycin crosses the OM of E. coli.
Project description:Urinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation, in which the contrasting effects of pathogens and commensals on host tissues are clearly displayed. While virulent Escherichia coli cause severe, potentially life-threatening disease by breaking the inertia of the mucosal barrier and infecting the kidneys, the most common outcome of bacteriuria is an asymptomatic carrier state resembling commensalism at other mucosal sites. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease associated responses in the host. To address this question, we examined the effects of asymptomatic bacterial carriage on host gene expression. Therapeutic urinary tract inoculation with the prototype ABU strain E. coli 83972 is a safe alternative approach in patients with therapy-resistant recurrent UTI. The strain establishes persistent bacteriuria, protecting patients against super-infection with more virulent strains. Using this protocol, we examined if the establishment of asymptomatic bacterial carriage alters host gene expression. After antibiotic treatment to remove prior infection, patients were inoculated with E. coli 83972 through a catheter. Blood samples were obtained before and 24 h after inoculation.
Project description:The aim of this study was to identify genes that can be targeted by helper drugs to counteract resistance towards ciprofloxacin (CIP). In order to reveal the impact of ciprofloxacin on the transcriptome, differential gene-expression analysis by RNA-seq was performed on the multidrug resistant E. coli strain ST131, treated with a clinically relevant concentration of ciprofloxacin (2 µg/mL).
Project description:Urinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation, in which the contrasting effects of pathogens and commensals on host tissues are clearly displayed. While virulent Escherichia coli cause severe, potentially life-threatening disease by breaking the inertia of the mucosal barrier and infecting the kidneys, the most common outcome of bacteriuria is an asymptomatic carrier state resembling commensalism at other mucosal sites. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease associated responses in the host. To address this question, we examined the effects of asymptomatic bacterial carriage on host gene expression. Therapeutic urinary tract inoculation with the prototype ABU strain E. coli 83972 is a safe alternative approach in patients with therapy-resistant recurrent UTI. The strain establishes persistent bacteriuria, protecting patients against super-infection with more virulent strains. Using this protocol, we examined if the establishment of asymptomatic bacterial carriage alters host gene expression.
Project description:This study aims to determine the epidemiology of Enterobacteriaceae resistant to antibiotics of last resort in pregnant women in labour at a tertiary hospital, Pretoria, South Africa. Rectal swabs shall be used to screen for colonisation with CRE and colistin-resistant Enterobacteriales in pregnant women during labour. Carbapenem and colistin-resistant Enterobacterales can cause the following infections: bacteraemia; nosocomial pneumonia; urinary tract infections, and intra-abdominal infections. Due to limited treatment options, infections caused by these multidrug-resistant organisms are associated with a mortality rate of 40-50%. Screening for colonisation of carbapenem-resistant Enterobacteriaceae (CRE) and colistin-resistant Enterobacteriaceae will help implement infection and prevention measures to limit the spread of these multidrug-resistant organisms.
Project description:Treatment of urinary tract infections is today a challenge due to the increasing prevalence of multidrug-resistant ESBL-producing uropathogenic Escherichia coli (UPEC). There is an urgent need for new treatment strategies for multidrug-resistant UPEC and preferably with targets that have low potential for development of resistance. Carbon monoxide-releasing molecules (CORMs) are novel and potent antibacterial agents. The present study examines the transcriptomic targets of CORM-2 in a multidrug-resistant ESBL-producing UPEC isolate (ESBL7) in response to a single exposure to CORM-2 and after repeated exposure to CORM-2. The bacterial viability and minimal inhibitory concentration (MIC) were also examined after repeated exposure to CORM-2. Microarray analysis revealed that a wide range of processes were affected by CORM-2, including a general trend of down-regulation in energy metabolism and biosynthesis pathways and up-regulation of the SOS response and DNA repair. Several genes involved in virulence (ibpB), antibiotic resistance (marAB, mdtABC) and biofilm formation (bhsA, yfgF) were up-regulated, while some genes involved in virulence (kpsC, fepCEG, entABE), antibiotic resistance (evgA) and biofilm formation (artIP) were down-regulated. Repeated exposure to CORM-2 did not alter the gene expression patterns, the growth inhibitory response to CORM-2 or the MIC values for CORM-2, cefotaxime, ciprofloxacin and trimethoprim.