Project description:Gene expression associated with apple fruit ripening and postharvest treatments was studied to identify transcripts that are regulated by ethylene signaling.
Project description:New mechanisms-of-action of anthocyanins (ACNs) provided by a red-fleshed apple compared with a white-fleshed apple ACN-poor, and with an ACN-rich extract on the proteome profile of aorta and heart as cardiovascular key tissues were determined. Hypercholesterolemic Wistar rats were separated into the corresponding groups to analyze the proteomic profile of the aorta and heart tissues using nano-liquid chromatography coupled to mass-spectrometry. Red-fleshed apple downregulated CRP, C1QB and CFP related-inflammation. White-fleshed apple reduced C1QB, CFB, CFD, C3, and C9 related to the complement system, reduced MB and CP related to iron metabolism, and increased ME1, PKM, and PC related to energy homeostasis. ACN-rich extract increased FMOD, TAGLN, and CAP1 related to cellular structure and decreased PRKACA, IQGAP1, and HSP90AB1 related to cellular signaling. Red-fleshed apple rich in ACNs suggested an anti-inflammatory effect while white-fleshed apple reduced the complement system protein-related. An apple matrix effect reduced inflammatory proteins regardless their ACN content.
Project description:Fire blight (FB) is a bacterial disease affecting plants from Rosaceae family, including apple and pear. FB develops after the infection of Erwinia amylovora, gram-negative enterobacterium, and results in burnt-like damages and wilting, which can affect all organs of the plant. Although the mechanisms underlying disease response in apples are not elucidated yet, it has been well described that FB resistance depends on the rootstock type. The main objective of this work was to identify miRNAs involved in response to bacterial infection in order to better explain apple defense mechanisms against fire blight disease. We performed deep sequencing of eighteen small RNA libraries obtained from inoculated and non-inoculated Gala apple leaves. 233 novel plant mature miRNAs were identified together with their targets and potential role in response to bacterial infection. We identify three apple miRNAs responding to inoculation (mdm-miR168a,b, mdm-miR194C and mdm-miR1392C) as well as miRNAs reacting to bacterial infection in a rootstock-specific manner (miR395 family). Our results provide insights into the mechanisms of fire blight resistance in apple.
Project description:Genome-wide DNA methylation analysis between long-term in vitro shoot culture and acclimatized apple plants DNA methylation is a process of epigenetic modification that can alter the functionality of a genome. Using whole-genome bisulfite sequencing, this study quantify the level of DNA methylation in the epigenomes of two diploid apple (Malus x domestica) scion cultivars ('McIntosh' and 'Húsvéti rozmaring') derived from three environmental conditions: in vivo mother plants in an orchard, in vitro culture, and acclimatized in vitro plants. The global DNA methylation levels were not dependent on the source of plant material. Significant differences in DNA methylation were identified in 586 out of 45,116 genes, including promoter and coding sequences, and classified as differentially methylated genes (DMGs). Differential methylation was visualised by an MA plot and functional genomic maps were established for biological processes, molecular functions and cellular components. Considering the DMGs, in vitro tissue culture resulted in the highest level of methylation, which decreased after acclimatization and tended to be similar to that in the mother tree. Methylation patterns of the two scions differed, indicating cultivar-specific epigenetic regulation of gene expression during adaptation to various environments. After selecting genes that displayed differences larger than ±10% in CpG and CHG contexts, or larger than ±1.35% in the CHH context from among the DMGs, they were annotated in Blast2GO v5.1.12 for Gene Ontology. These DNA methylation results suggest that epigenetic changes may contribute to the adaptation of apple to environmental changes by modifying gene expression.
Project description:Closed terminal buds of apple trees (Malus x domestica Borkh, Royal Gala and Castel Gala varieties) grown in commercial orchards were harvested during autumn and winter and exposed to cold treatments