Project description:Most proteogenomic approaches for mapping single amino acid polymorphisms (SAPs) require construction of a sample-specific database containing protein variants predicted from the next-generation sequencing (NGS) data. We present a new strategy for direct SAP detection without relying on NGS data. Among the 348 putative SAP peptides identified in an industrial yeast strain, 85.6% of SAP sites were validated by genomic sequencing.
Project description:Classical-like Ehlers–Danlos syndrome (clEDS) is an autosomal recessive disorder caused by complete absence of tenascin-X resulting from biallelic variation in TNXB. Accurate detection of TNXB variants is challenging because of the presence of the pseudogene TNXA, which can undergo non-allelic homologous recombination. Therefore, we designed a genetic screening system that is performed using similar operations to other next-generation sequencing (NGS) panel analyses and can be applied to accurately detect TNXB variants and the recombination of TNXA-derived sequences into TNXB. We also analyzed the levels of serum form of TNX (sTNX) by Western bot and LC/MS/MS. Using this system, we identified biallelic TNXB variants in nine unrelated clEDS patients. This report is the first to apply an NGS-based screening for TNXB variants and represents the third largest cohort of clEDS.
Project description:In this study, we performed a comparative analysis of gut microbiota composition and gut microbiome-derived bacterial extracellular vesicles (bEVs) isolated from patients with solid tumours and healthy controls. After isolating bEVs from the faeces of solid tumour patients and healthy controls, we performed spectrometry analysis of their proteomes and next-generation sequencing (NGS) of the 16S gene. We also investigated the gut microbiomes of faeces from patientsand controls using 16S rRNA sequencing. Machine learning was used to classify the samples into patients and controls based on their bEVs and faecal microbiomes.
Project description:In order to evaluate the performance of CNV detection in next-generation sequencing platform in varied sample types, we employed chromosomal microarray analysis (CMA) for validation of the samples with NGS-based detection results (NCBI Sequence Read Archive with accession number SRA296708). Besides array Comparative Genomics Hybridization (aCGH, Agilent) , we used a commerical SNP-array (Illumina) including early abortus, induced termination, prenatal samples and postnatal samples. CMA results were compared with NGS-based detection results. 100% consistency was obtained between NGS-based approach and CMA in pathogenic or likely pathogenic CNVs detection.
Project description:We evaluated whether targeted next-generation sequencing (NGS) using the Ion Torrent Personal Genome Sequencer of cfDNA could identify prognostic or predictive factors for overall survival (OS) or progression free survival (PFS) within a large cohort of patients with advanced lung adenocarcinoma enrolled in the GALAXY-1 trial.
Project description:In order to evaluate the performance of CNV detection in next-generation sequencing platform in varied sample types, we employed chromosomal microarray analysis (CMA) for validation of the samples with NGS-based detection results (NCBI Sequence Read Archive with accession number SRA296708). Besides snp-array, we used a customized array Comparative Genomics Hybridization (aCGH, Agilent) approach for a cohort of clinical samples including early abortus, induced termination, prenatal samples and postnatal samples. CMA results were compared with NGS-based detection results. 100% consistency was obtained between NGS-based approach and CMA in pathogenic or likely pathogenic CNVs detection.
Project description:The proliferative darkening syndrome (PDS) is an annually recurring disease that causes species-specific die-off of brown trout (Salmo trutta fario) with a mortality rate of near 100 % in pre-alpine rivers of central Europe. So far the etiology and causation of this disease is still unclear. The objective of this study was to identify the cause of PDS using a next-generation technology detection pipeline. Following the hypothesis that PDS is caused by an infectious agent, brown trout specimens were exposed to water from a heavily affected pre-alpine river with annual occurrence of the disease. Specimens were sampled over the entire time period from potential infection through death. Transcriptomic analysis (microarray) and RT-qPCR of brown trout liver tissue evidenced strong gene expression response of immune-associated genes. Messenger RNA of specimens with synchronous immune expression profiles were ultra-deep sequenced using next-generation sequencing technology (NGS). Bioinformatic processing of generated reads and gap-filling Sanger re-sequencing of the identified pathogen genome revealed strong evidence that a piscine-related reovirus is the causative organism of PDS. The identified pathogen is phylogenetically closely related to the family of piscine reoviruses (PRV) which are considered as the causation of different fish diseases in Atlantic and Pacific salmonid species such as Salmo salar and Onchorhynchus kisutch. This study also highlights that the approach of first screening immune responses along a timeline in order to identify synchronously affected stages in different specimens which subsequently were ultra-deep sequenced is an effective approach in pathogen detection. In particular, the identification of specimens with synchronous molecular immune response patterns combined with NGS sequencing and gap-filling re-sequencing resulted in the successful pathogen detection of PDS.
Project description:Exosomes and exosomal miRNAs from the plasma of volunteers were isolated from thyroid nodules and papillary tyriod cancer patients . Profiling of exosomal miRNA was performed using next-generation sequencing(NGS) to identify miRNA candidates for diagnosis.