Project description:Neural crest cells are migratory progenitor cells that contribute to nearly all tissues and organs throughout the body. Their formation, migration and differentiation are regulated by a multitude of signaling pathways, that when disrupted can lead to disorders termed neurocristopathies. While work in avian and amphibian species has revealed essential factors governing the specification and induction of neural crest cells during gastrulation and neurulation in non-mammalian species, their functions do not appear to be conserved in mice, leaving major gaps in our understanding of neural crest cell formation in mammals. Here we describe Germ Cell Nuclear Factor (GCNF/Nr6a1), an orphan nuclear receptor, as a critical regulator of neural crest cell formation in mice. Gcnf null mutant mice, exhibit a major disruption of neural crest cell formation. The purpose of this experiment is to examine gene expression changes in response to Gcnf mutation in E9.0 mouse embryos.
Project description:Studying chemical disturbances during neural differentiation of mES cells has been established as an alternative in vitro testing approach for the identification of developmental toxicants. miRNAs represent a class of small regulatory RNA molecules, which bind to target mRNAs thereby repressing their translation. Many studies have shown an essential role of miRNAs in regulation of gene expression during development and ESC differentiation. Thus, neural differentiation of ESC in vitro allows investigating the role of miRNAs in chemical-mediated developmental toxicity. We analyzed the expression of miRNAs and transcriptomics changes during neural differentiation of mESC exposed to the developmental neurotoxicant sodium valproate (VPA). A total of 110 miRNAs and 377 mRNAs were identified differently expressed in neural differentiating mES cells under VPA treatment (300µM) compared to solvent control on day 16 of differentiation. Analysis of miRNA expression revealed that valproate switches the lineage specification from neural to myogenic differentiation (upregulation of muscle-enriched miRNAs mir-206, mir-133a and mir-10a and downregulation of neuro-specific miRNAs mir-124a, mir-128 and mir-137). The findings on the miRNA level could be confirmed on mRNA level (induction of expression of myogenic regulatory factors (MRFs) as well as muscle specific genes (Actc1, calponin, myosin light chain, asporin, decorin) and repression of genes involved in neurogenesis (Otx1 and 2, Zic3, 4, 5)) as well as morphologically by immunocytochemistry. The observed results were VPA specific and most probably due to inhibition of histone deacetylase (HDAC) activity of VPA for two reasons: (i) we did not observe any induction of muscle specific miRNAs in neural differentiating ES cells exposed to the unrelated developmental neurotoxicant sodium arsenite; (ii) expression of muscle specific mir-206 and muscle enriched mir-10a was similarly increased in cells exposed to a structurally different HDAC inhibitor, trichostatin A (TSA). Furthermore, using our in vitro cell system we could confirm an aberrant expression of known VPA target genes and genes involved in neural tube closure. We conclude that miRNA expression profiling is a suitable molecular endpoint for developmental neurotoxicity. Observed lineage shift into myogenesis, where miRNAs play a significant role, could be a major developmental neurotoxical mechanism of VPA. We used microarray approach to identify altered miRNA expression in neural differentiated mES cells exposed to two known developmental neurotxicants and epigenetic active substances, sodium valproate (VPA) and sodium arsenite (As) mES cells line W4 were induced to differnetiate into neurons under exposure to VPA for 16 days. RNA for microarrays was collected on day 16 of differentiation from three biological replicates of solvent control (PBS) and VPA treated cells.
Project description:Studying chemical disturbances during neural differentiation of mES cells has been established as an alternative in vitro testing approach for the identification of developmental toxicants. miRNAs represent a class of small regulatory RNA molecules, which bind to target mRNAs thereby repressing their translation. Many studies have shown an essential role of miRNAs in regulation of gene expression during development and ESC differentiation. Thus, neural differentiation of ESC in vitro allows investigating the role of miRNAs in chemical-mediated developmental toxicity. We analyzed the expression of miRNAs and transcriptomics changes during neural differentiation of mESC exposed to the developmental neurotoxicant sodium valproate (VPA). A total of 110 miRNAs and 377 mRNAs were identified differently expressed in neural differentiating mES cells under VPA treatment (300µM) compared to solvent control on day 16 of differentiation. Analysis of miRNA expression revealed that valproate switches the lineage specification from neural to myogenic differentiation (upregulation of muscle-enriched miRNAs mir-206, mir-133a and mir-10a and downregulation of neuro-specific miRNAs mir-124a, mir-128 and mir-137). The findings on the miRNA level could be confirmed on mRNA level (induction of expression of myogenic regulatory factors (MRFs) as well as muscle specific genes (Actc1, calponin, myosin light chain, asporin, decorin) and repression of genes involved in neurogenesis (Otx1 and 2, Zic3, 4, 5)) as well as morphologically by immunocytochemistry. The observed results were VPA specific and most probably due to inhibition of histone deacetylase (HDAC) activity of VPA for two reasons: (i) we did not observe any induction of muscle specific miRNAs in neural differentiating ES cells exposed to the unrelated developmental neurotoxicant sodium arsenite; (ii) expression of muscle specific mir-206 and muscle enriched mir-10a was similarly increased in cells exposed to a structurally different HDAC inhibitor, trichostatin A (TSA). Furthermore, using our in vitro cell system we could confirm an aberrant expression of known VPA target genes and genes involved in neural tube closure. We conclude that miRNA expression profiling is a suitable molecular endpoint for developmental neurotoxicity. Observed lineage shift into myogenesis, where miRNAs play a significant role, could be a major developmental neurotoxical mechanism of VPA. We used microarray approach to identify altered miRNA expression in neural differentiated mES cells exposed to two known developmental neurotxicants and epigenetic active substances, sodium valproate (VPA) and sodium arsenite (As) mES cells line W4 were induced to differnetiate to neurons under exposure to VPA and As for 16 days. RNA for microarrays was collected on day 16 of differentiation from three biological replicates of solvent controls (PBS was used as a solvent for VPA and H20 for As) or substance treated cells.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Studying chemical disturbances during neural differentiation of mES cells has been established as an alternative in vitro testing approach for the identification of developmental toxicants. miRNAs represent a class of small regulatory RNA molecules, which bind to target mRNAs thereby repressing their translation. Many studies have shown an essential role of miRNAs in regulation of gene expression during development and ESC differentiation. Thus, neural differentiation of ESC in vitro allows investigating the role of miRNAs in chemical-mediated developmental toxicity. We analyzed the expression of miRNAs and transcriptomics changes during neural differentiation of mESC exposed to the developmental neurotoxicant sodium valproate (VPA). A total of 110 miRNAs and 377 mRNAs were identified differently expressed in neural differentiating mES cells under VPA treatment (300µM) compared to solvent control on day 16 of differentiation. Analysis of miRNA expression revealed that valproate switches the lineage specification from neural to myogenic differentiation (upregulation of muscle-enriched miRNAs mir-206, mir-133a and mir-10a and downregulation of neuro-specific miRNAs mir-124a, mir-128 and mir-137). The findings on the miRNA level could be confirmed on mRNA level (induction of expression of myogenic regulatory factors (MRFs) as well as muscle specific genes (Actc1, calponin, myosin light chain, asporin, decorin) and repression of genes involved in neurogenesis (Otx1 and 2, Zic3, 4, 5)) as well as morphologically by immunocytochemistry. The observed results were VPA specific and most probably due to inhibition of histone deacetylase (HDAC) activity of VPA for two reasons: (i) we did not observe any induction of muscle specific miRNAs in neural differentiating ES cells exposed to the unrelated developmental neurotoxicant sodium arsenite; (ii) expression of muscle specific mir-206 and muscle enriched mir-10a was similarly increased in cells exposed to a structurally different HDAC inhibitor, trichostatin A (TSA). Furthermore, using our in vitro cell system we could confirm an aberrant expression of known VPA target genes and genes involved in neural tube closure. We conclude that miRNA expression profiling is a suitable molecular endpoint for developmental neurotoxicity. Observed lineage shift into myogenesis, where miRNAs play a significant role, could be a major developmental neurotoxical mechanism of VPA. We used microarray approach to identify altered miRNA expression in neural differentiated mES cells exposed to two known developmental neurotxicants and epigenetic active substances, sodium valproate (VPA) and sodium arsenite (As)
Project description:Studying chemical disturbances during neural differentiation of mES cells has been established as an alternative in vitro testing approach for the identification of developmental toxicants. miRNAs represent a class of small regulatory RNA molecules, which bind to target mRNAs thereby repressing their translation. Many studies have shown an essential role of miRNAs in regulation of gene expression during development and ESC differentiation. Thus, neural differentiation of ESC in vitro allows investigating the role of miRNAs in chemical-mediated developmental toxicity. We analyzed the expression of miRNAs and transcriptomics changes during neural differentiation of mESC exposed to the developmental neurotoxicant sodium valproate (VPA). A total of 110 miRNAs and 377 mRNAs were identified differently expressed in neural differentiating mES cells under VPA treatment (300µM) compared to solvent control on day 16 of differentiation. Analysis of miRNA expression revealed that valproate switches the lineage specification from neural to myogenic differentiation (upregulation of muscle-enriched miRNAs mir-206, mir-133a and mir-10a and downregulation of neuro-specific miRNAs mir-124a, mir-128 and mir-137). The findings on the miRNA level could be confirmed on mRNA level (induction of expression of myogenic regulatory factors (MRFs) as well as muscle specific genes (Actc1, calponin, myosin light chain, asporin, decorin) and repression of genes involved in neurogenesis (Otx1 and 2, Zic3, 4, 5)) as well as morphologically by immunocytochemistry. The observed results were VPA specific and most probably due to inhibition of histone deacetylase (HDAC) activity of VPA for two reasons: (i) we did not observe any induction of muscle specific miRNAs in neural differentiating ES cells exposed to the unrelated developmental neurotoxicant sodium arsenite; (ii) expression of muscle specific mir-206 and muscle enriched mir-10a was similarly increased in cells exposed to a structurally different HDAC inhibitor, trichostatin A (TSA). Furthermore, using our in vitro cell system we could confirm an aberrant expression of known VPA target genes and genes involved in neural tube closure. We conclude that miRNA expression profiling is a suitable molecular endpoint for developmental neurotoxicity. Observed lineage shift into myogenesis, where miRNAs play a significant role, could be a major developmental neurotoxical mechanism of VPA. We used microarray approach to identify altered miRNA expression in neural differentiated mES cells exposed to two known developmental neurotxicants and epigenetic active substances, sodium valproate (VPA) and sodium arsenite (As)
Project description:Neural crest cells are migratory progenitor cells that contribute to nearly all tissues and organs throughout the body. Their formation, migration and differentiation are regulated by a multitude of signaling pathways, that when disrupted can lead to disorders termed neurocristopathies. While work in avian and amphibian species has revealed essential factors governing the specification and induction of neural crest cells during gastrulation and neurulation in non-mammalian species, their functions do not appear to be conserved in mice, leaving major gaps in our understanding of neural crest cell formation in mammals. Here we describe Germ Cell Nuclear Factor (GCNF/Nr6a1), an orphan nuclear receptor, as a critical regulator of neural crest cell formation in mice. Gcnf null mutant mice, exhibit a major disruption of neural crest cell formation. The purpose of this experiment is to examine gene expression changes in response to Gcnf mutation in anterior and posterior cranial regions of E9.25 mouse embryos.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)