Project description:Five SAGE libraries were generated from A. thaliana leaf tissue collected at time points ranging from 30 minutes to one week of low temperature treatment (4°C). Over 240,000 high quality SAGE tags, corresponding to 16,629 annotated genes, provided a comprehensive survey of changes in the transcriptome in response to low temperature, from perception of the stress to acquisition of freezing tolerance. Keywords: SAGE; time course; stress response; cold acclimation; freezing tolerance SAGE libraries were generated from A. thaliana leaf tissue collected after exposure to low temperature (4°C) for 0 minutes, 30 minutes, 2 hours, 2 days and one week, the tags were matched to the Arabidopsis genome and statistical analysis was performed to reveal differential gene expression.
Project description:Five SAGE libraries were generated from A. thaliana leaf tissue collected at time points ranging from 30 minutes to one week of low temperature treatment (4°C). Over 240,000 high quality SAGE tags, corresponding to 16,629 annotated genes, provided a comprehensive survey of changes in the transcriptome in response to low temperature, from perception of the stress to acquisition of freezing tolerance. Keywords: SAGE; time course; stress response; cold acclimation; freezing tolerance
Project description:We report ATAC-seq for several A. thaliana accessions in healthy leaf tissue. As part of an investigation into the evolution of conserved noncoding sequences, our goal was to identify overlaps between regions of accessible chromatin and CNS. Manuscript in review. Biorxiv preprint doi: https://doi.org/10.1101/727669
Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity.
Project description:To identify genes of the guard cell transkriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity. Ost1-2 and slac1-3 mutants were compared to their wildtype.
Project description:Understanding the mechanism of cadmium (Cd) accumulation in plants is important to help reduce its potential toxicity to both plants and humans through dietary and environmental exposure. Here, we report on a study to uncover the genetic basis underlying natural variation in Cd accumulation in a world-wide collection of 349 wild collected Arabidopsis thaliana accessions. We identified a 4-fold variation (0.5 – 2 μg Cd g-1 dry weight) in leaf Cd accumulation when these accessions were grown in a controlled common garden. By combining genome-wide association mapping, linkage mapping in an experimental F2 population and transgenic complementation, we reveal that HMA3 is the sole major locus responsible for the variation in leaf Cd accumulation we observe in this diverse population of A. thaliana accessions. Analysis of the predicted amino acid sequence of HMA3 from 149 A. thaliana accessions reveals the existence of 10 major natural protein haplotypes. Association of these haplotypes with leaf Cd accumulation and genetics complementation experiments indicate that 5 of these haplotypes are active and 5 are inactive, and that elevated leaf Cd accumulation is associated with the reduced function of HMA3 caused by a nonsense mutation and polymorphisms that change two specific amino acids.
Project description:Trichomes of Arabidopsis thaliana have been broadly used to study cell development, cell differentiation and cell wall biogenesis. In this context, the exposed position, extraordinary size and characteristic morphology of trichomes featured particularly the exploration of trichome mutant phenotypes. However, trichome-specific biochemical or -omics analyses require a proper separation of trichomes from residual plant tissue. Thus, different strategies were proposed in the past for trichome isolation, which mostly rely on harsh conditions. To improve trichome-leaf separation, we revised a previously proposed method for isolating A. thaliana trichomes by optimizing the mechanical and biochemical specifications for trichome release. Furthermore, we introduced a density gradient centrifugation step to remove residual plant debris. We found that prolonged, yet mild seedling agitation increases the overall trichome yield by about 62% compared to the original protocol. We noticed that subsequent density gradient centrifugation further visually enhances trichome purity, which could be advantageous for downstream analyses. Histochemical and biochemical investigation of trichome cell wall composition indicated that gentle agitation during trichome release largely preserves trichome integrity. We used enriched and purified trichomes for proteomic analysis and present a reference data set of trichome-resident and -enriched proteins.