Project description:Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) consist of primary myelofibrosis (PMF), polycythemia vera (PV), essential thrombocythemia (ET) In this dataset, we compare the gene expression data of patients JAK2V617F vs. CALR-mutated MPN patients.
Project description:Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) consist of primary myelofibrosis (PMF), polycythemia vera (PV), essential thrombocythemia (ET) and seconday myelofibrosis (SMF), comprising post-ET-MF(pET-MF) and post-PV-MF(pPV-MF). In this dataset, we compare the gene expression data of bone marrow or peripheral blood mononuclear cells (BMMCs/PBMCs) of CD34+ cells from MPN patients and healthy donors.
Project description:Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) consist of primary myelofibrosis (PMF), polycythemia vera (PV), essential thrombocythemia (ET) and seconday myelofibrosis (pPV-MF or pET-MF) In this dataset, we compare the gene expression data of bone marrow (BM) or peripheral blood (PB) mononuclear cells of CD34+ cells from JAK2V617F mutated patients vs. healthy donors
Project description:Primary myelofibrosis (PMF) together with polycythemia vera (PV) and essential thrombocythemia (ET) belongs to the classic Philadelphia-negative myeloproliferative neoplasms (MPNs). PV and ET can evolve to secondary myelofibrosis (SMF) giving rise to post-PV (PPV) and post-ET (PET) myelofibrosis (MF). PMF and SMF patients are currently managed in the same way and prediction of survival is based on the same prognostic models, even if it has been demonstrated that they can’t accurately distinguish different risk categories in SMF. In the last few years interest grew concerning the ability of gene expression profiling (GEP) to provide valuable prognostic information for clinical decision making. To construct a molecular signature that can predict survival according to gene expression we studied GEP of granulocytes from 114 MF patients, including 35 prefibrotic/early PMF (Pre-PMF), 37 overt PMF (Overt-PMF), 26 PET and 16 PPV, using microarray platform.
Project description:Myeloproliferative Neoplasms (MPN) are malignancies of hematopoietic stem and progenitor cells (HSPCs) that lead to the overproduction of mature blood cells. These disorders include Essential Thrombocythemia (ET), Polycythaemia Vera (PV), and Primary Myelofibrosis (PMF), primarily driven by somatic mutations such as JAK2V617F. Research indicates that mesenchymal stromal cells (MSCs) support fibrosis in PMF, though their role in ET and PV remains less clear. Furthermore, in vivo studies of ET/PV HSPCs remain a challenge due to low engraftment levels in xenograft models.
Project description:Primary mielofibrosis (PMF) is a rare chronic myeloproliferative disorder characterized by the accumulation of abnormal megakaryocytes (Mks) in the bone marrow (BM), variable degrees of BM fibrosis, osteosclerosis and angiogenesis, immature myeloid and erythroid cells, and tear-drop erythrocytes in the peripheral blood (PB), and extramedullary hematopoiesis. The identification of the JAK2V617F mutation represented a seminal discovery in the field of Philadelphia-chromosome–negative chronic myeloproliferative neoplasms (MPNs), providing clues to the pathogenesis, prompting a revision of the diagnostic criteria, and culminating in the development of clinical trials with JAK2 (and JAK1) inhibitors. The JAK2V617F mutation occurs in almost all patients with polycythemia vera (PV) and in 50%-70% of those with essential thrombocythemia (ET) and primary myelofibrosis (PMF). Soon after the identification of the JAK2V617F mutation, mutations in JAK2 exon 12 were described in rare patients with JAK2V617F-negative PV and mutations in MPL were reported in 5%-10% of ET or PMF subjects. The complexity of the molecular pathogenesis of MPNs is reinforced by discovery of additional mutations in TET2, ASXL1, CBL, IDH1/IDH2, EZH2 and IKZF1. These mutations are detected in a minority of patients at different phases of the disorder, including leukemic transformation, and are variably associated each other and with JAK2 or MPL mutations. In order to better characterize biological differences between mutated and wild-type PMF cell populations we performed a gene expression profiling on 9 samples carrying at least one mutation in ASXL1, SRSF2 or EZH2 genes and 11 wild-type samples using the Affymetrix GeneChip technology. After data preprocessing and filtering a supervised analysis approach was used to define a gene expression signature for mutated samples. PMF samples carrying at least one mutation in ASXL1, SRSF2 or EZH2 genes exhibit a specific molecular signature as compared with WT samples. Gene expression profile (GEP) of CD34+ cells from 20 PMF patients (1 replicate for each sample). In particular, GEP was performed on 9 samples carrying at least one mutation in ASXL1, SRSF2 or EZH2 genes and 11 wild-type samples.
Project description:Primary mielofibrosis (PMF) is a rare chronic myeloproliferative disorder characterized by the accumulation of abnormal megakaryocytes (Mks) in the bone marrow (BM), variable degrees of BM fibrosis, osteosclerosis and angiogenesis, immature myeloid and erythroid cells, and tear-drop erythrocytes in the peripheral blood (PB), and extramedullary hematopoiesis. The identification of the JAK2V617F mutation represented a seminal discovery in the field of Philadelphia-chromosome–negative chronic myeloproliferative neoplasms (MPNs), providing clues to the pathogenesis, prompting a revision of the diagnostic criteria, and culminating in the development of clinical trials with JAK2 (and JAK1) inhibitors. The JAK2V617F mutation occurs in almost all patients with polycythemia vera (PV) and in 50%-70% of those with essential thrombocythemia (ET) and primary myelofibrosis (PMF). Soon after the identification of the JAK2V617F mutation, mutations in JAK2 exon 12 were described in rare patients with JAK2V617F-negative PV and mutations in MPL were reported in 5%-10% of ET or PMF subjects. The complexity of the molecular pathogenesis of MPNs is reinforced by discovery of additional mutations in TET2, ASXL1, CBL, IDH1/IDH2, EZH2 and IKZF1. These mutations are detected in a minority of patients at different phases of the disorder, including leukemic transformation, and are variably associated each other and with JAK2 or MPL mutations. In order to better characterize biological differences between mutated and wild-type PMF cell populations we performed a gene expression profiling on 9 samples carrying at least one mutation in ASXL1, SRSF2 or EZH2 genes and 11 wild-type samples using the Affymetrix GeneChip technology. After data preprocessing and filtering a supervised analysis approach was used to define a gene expression signature for mutated samples. PMF samples carrying at least one mutation in ASXL1, SRSF2 or EZH2 genes exhibit a specific molecular signature as compared with WT samples.
Project description:Even though mutations in epigenetic regulators frequently occur in myeloproliferative neoplasms, their effects on the epigenome have not been well studied. Furthermore, even though primary myelofibrosis (PMF) has a markedly worse prognosis compared to essential thrombocytosis (ET) or polycythemia vera (PV), the molecular distinctions between these subgroups are not well elucidated. We performed the HELP (HpaII tiny fragment enriched by LM-PCR) assay to study genome-wide methylation in PV, ET and PMF samples compared with healthy controls. We determined that PV and ET are characterized by aberrant promoter hypermethylation while PMF is an epigenetically distinct subgroup characterized by both aberrant hyper and hypomethylation. Aberrant hypomethylation in PMF was seen to occur in non CpG island loci, demonstrating further qualitative differences between the disease subgroups. The differentially methylated genes in PV and ET were involved predominantly in cell signaling pathways and were enriched for binding sites of GATA1 and other transcription factors. In contrast, aberrantly methylated genes in PMF were involved in inflammatory pathways and were enriched for NF1 (NFI), LEF1 and other transcription factors. Within the PMF subgroup, cases with ASXL1 disruptions formed an epigenetically distinct subgroup with relatively increased methylation. Cases of MPNs with TET2 mutations demonstrated decreased levels of hydroxymethylation and distinct set of hypermethylated genes. In contrast, the JAK2V617F mutation did not drive epigenetic clustering within MPNs. Finally, the significance of aberrant methylation was demonstrated by sensitivity of MPN derived cell lines to decitabine. These results demonstrate epigenetic differences between PMF and PV/ET and reveal methylomic signatures of ASXL1 and TET2 mutations.