Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:To investigate the regulatory targets of the RegR virulence regulon of rabbit specific enteropathogenic Escherichia coli strain E22
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:While global transcription factors (TFs) have been studied extensively in Escherichia coli model strains, conservation and diversity in TF regulation between strains is still unknown. Here we use a combination of ChIP-exo--to define ferric uptake regulator (Fur) binding sites--and differential gene expression--to define the Fur regulon in nine E. coli strains. We then define a pan-regulon consisting of 469 target genes that includes all Fur target genes in all nine strains. The pan-regulon is then divided into the core regulon (target genes found in all the strains, n=36), the accessory regulon (target found in two to eight strains, n=158) and the unique regulon (target genes found in one strain, n=275). Thus, there is a small set of Fur regulated genes common to all nine strains, but a large number of regulatory targets unique to a particular strain. Many of the unique regulatory targets are genes unique to that strain. This first-established pan-regulon reveals a common core of conserved regulatory targets and significant diversity in transcriptional regulation amongst E. coli strains, reflecting diverse niche specification and strain history.
Project description:To investigate the regulatory targets of the RegR virulence regulon of rabbit specific enteropathogenic Escherichia coli strain E22 Single factor (genotype) with dye swaps.
Project description:Many reports show an association between the Pst system, the Pho regulon related genes and bacterial virulence. Our previous results showed that a functional Pst system is required for full virulence, resistance to serum, polymyxin B and acid shock. However, the interplay between the Pst system and virulence has an unknown molecular basis. To understand global APEC virulent strain responses to Pho regulon activation, we conducted transcriptome profiling experiments comparing the APEC chi7122 strain and its isogenic Pst mutant grown in rich phosphate medium using the Affymetrix GeneChip® E. coli Genome 2.0 Array. The Affymetrix GeneChip® E. coli Genome 2.0 Array contains the genome of the E. coli MG1655 and three pathogenic E. coli strain (EDL933, Sakai and CFT073) representing 20,366 genes. While comparing genes expression between Pst mutant and the wild type chi7122 strain, 471 genes are either up- (254) or down-regulated (217) of at least 1.5-fold, with a p-value inferior or equal to 0.05 and a false discovery rate of 2.71%. Keywords: Escherichia coli, phosphate starvation response, Pho regulon, Pst system, Affymetrix, transcriptional analysis
Project description:Escherichia coli (E. coli) amine oxidase (ECAO) encoded by tynA gene has been one of the model enzymes to study the mechanism of oxidative deamination of amines to the corresponding aldehydes by amine oxidases. The biological roles of ECAO have been less addressed. Therefore we have constructed a gene deletion Escherichia coli K-12 strain, E. coli tynA-, and used the microarray technique to address its function by comparing the total RNA gene expression to the one of the wt. Our results suggest that tynA is a reserve gene for stringent environmental conditions and its gene product ECAO a growth advantage compared to other bacteria due to H2O2 production.
Project description:The pyruvate dehydrogenase regulator protein (PdhR) of Escherichia coli acts as a transcriptional regulator in a pyruvate dependent manner to control central metabolic fluxes. However, the complete PdhR regulon has not yet been uncovered. To achieve an extended understanding of its gene regulation network, we combined large-scale network inference and experimental verification of results obtained by a systems biology approach.
Project description:The goal of this study is to compare gene expression data for a well known model organism (Escherichia coli) using different technologies (NGS here, microarray from GSE48776).