Project description:The ectoine hydroxylase (EctD) is a member of the non-haem-containing iron(II)- and 2-oxoglutarate-dependent dioxygenase superfamily. Its mononuclear iron centre is a prerequisite for the activity of this enzyme and promotes the O2-dependent oxidative decarboxylation of 2-oxoglutarate, which is coupled to a two-electron oxidation of the substrate ectoine to yield 5-hydroxyectoine. An expression and purification protocol for the EctD enzyme from Sphingopyxis alaskensis was developed and the protein was crystallized using the sitting-drop vapour-diffusion method. This resulted in two different crystal forms, representing the apo and iron-bound forms of the enzyme.
Project description:Activating the cryptic secondary metabolic gene clusters is a vital research field in Streptomyces. The marine Streptomyces sp. FJNU027 strain which could produce tirandamycins was cultured in the oligotrophic medium. Compared with normal medium, a differential product in oligotrophic culture was found by HPLC assay. After mass fermentation, 2 mg of the differential product was obtained from 30 L fermentation broth by solvent extraction, column chromatography over sephadex LH-20 and reverse phase C18, and other methods. It was identified as 4,4',5,5'-tetramethyl-[1,1'- diphenyl]-2,2'-diol by NMR and MS data. The production of this compound was enhanced with the increment of cultural time. Transcriptome sequencing analysis showed that the highest upregulated genes under oligotrophic condition were glycosidase, TraR/DksA C4-type zinc finger protein and ribonuclease encoding genes, while the expression of a MarR family transcriptional regulator was most significantly decreased under oligotrophic condition. The results indicate that oligotrophic culture is an effective method for altering the secondary metabolism of Streptomyces.
Project description:Ectoine biosynthetic genes (ectABC) are widely distributed in bacteria. Microorganisms that carry them make copious amounts of ectoine as a cell protectant in response to high-osmolarity challenges. Ectoine synthase (EctC; EC 4.2.1.108) is the key enzyme for the production of this compatible solute and mediates the last step of ectoine biosynthesis. It catalyzes the ring closure of the cyclic ectoine molecule. A codon-optimized version of ectC from Sphingopyxis alaskensis (Sa) was used for overproduction of SaEctC protein carrying a Strep-tag II peptide at its carboxy-terminus. The recombinant SaEctC-Strep-tag II protein was purified to near-homogeneity from Escherichia coli cell extracts by affinity chromatography. Size-exclusion chromatography revealed that it is a dimer in solution. The SaEctC-Strep-tag II protein was crystallized using the sitting-drop vapour-diffusion method and crystals that diffracted to 1.0 Å resolution were obtained.
Project description:BACKGROUND: With the aim of remaining viable, bacteria must deal with changes in environmental conditions, including increases in external osmolarity. While studies concerning bacterial response to this stress condition have focused on soil, marine and enteric species, this report is about Caulobacter crescentus, a species inhabiting freshwater oligotrophic habitats. RESULTS: A genomic analysis reported in this study shows that most of the classical genes known to be involved in intracellular solute accumulation under osmotic adaptation are missing in C. crescentus. Consistent with this observation, growth assays revealed a restricted capability of the bacterium to propagate under hyperosmotic stress, and addition of the compatible solute glycine betaine did not improve bacterial resistance. A combination of transcriptomic and proteomic analyses indicated quite similar changes triggered by the presence of either salt or sucrose, including down-regulation of many housekeeping processes and up-regulation of functions related to environmental adaptation. Furthermore, a GC-MS analysis revealed some metabolites at slightly increased levels in stressed cells, but none of them corresponding to well-established compatible solutes. CONCLUSION: Despite a clear response to hyperosmotic stress, it seems that the restricted capability of C. crescentus to tolerate this unfavorable condition is probably a consequence of the inability to accumulate intracellular solutes. This finding is consistent with the ecology of the bacterium, which inhabits aquatic environments with low nutrient concentration. Three experimental procedures, each of them performed in three replicates. A total of nine independent biological samples were used
Project description:BACKGROUND: With the aim of remaining viable, bacteria must deal with changes in environmental conditions, including increases in external osmolarity. While studies concerning bacterial response to this stress condition have focused on soil, marine and enteric species, this report is about Caulobacter crescentus, a species inhabiting freshwater oligotrophic habitats. RESULTS: A genomic analysis reported in this study shows that most of the classical genes known to be involved in intracellular solute accumulation under osmotic adaptation are missing in C. crescentus. Consistent with this observation, growth assays revealed a restricted capability of the bacterium to propagate under hyperosmotic stress, and addition of the compatible solute glycine betaine did not improve bacterial resistance. A combination of transcriptomic and proteomic analyses indicated quite similar changes triggered by the presence of either salt or sucrose, including down-regulation of many housekeeping processes and up-regulation of functions related to environmental adaptation. Furthermore, a GC-MS analysis revealed some metabolites at slightly increased levels in stressed cells, but none of them corresponding to well-established compatible solutes. CONCLUSION: Despite a clear response to hyperosmotic stress, it seems that the restricted capability of C. crescentus to tolerate this unfavorable condition is probably a consequence of the inability to accumulate intracellular solutes. This finding is consistent with the ecology of the bacterium, which inhabits aquatic environments with low nutrient concentration.
Project description:In oligotrophic ocean waters where bacteria are often subjected to chronic nutrient limitation, community transcriptome sequencing has pointed to the presence of highly abundant small RNAs (sRNAs). The role of sRNAs in regulating response to nutrient stress was investigated in a model heterotrophic marine bacterium Ruegeria pomeroyi grown in continuous culture under carbon and nitrogen limitation. RNAseq analysis identified 98 sRNAs, of which 69 were cis-encoded and located antisense to their target genes, and 30 were trans-encoded and linked to predicted target genes through complementarity analysis. The most prevalent functional roles of target genes were transport, cell-cell interactions, signal transduction, and transcriptional regulation. Thirty-two percent of the sRNAs had been identified in a previous study of R. pomeroyi growth on organic sulfur compounds, and may be constitutively expressed, while 69% were not identified in previous studies. Eighty-six percent and were transcribed equally under both carbon and nutrient limitation, and may be involved in a general stress response; 14% were differentially regulated under carbon versus nitrogen stress, and may respond to specific nutrient limitations. A network analysis of the predicted target genes of the R. pomeroyi sRNAs indicated that they average fewer connections than typical protein-encoding genes, and appear to be more important in peripheral or niche-defining functions encoded in the pan genome rather than central metabolism encoded in the core genome.