Project description:The energy metabolism pathways are significantly influenced by the available carbon sources. In Saccharomyces cerevisiae, energy is primarily produced through aerobic respiration during glycerol cultivation, a process believed to depend on the yeast AMPK (AMP-activated protein kinase) homolog, Snf1. It has been reported that Snf1 increases the expression of respiratory genes by phosphorylating transcriptional activators in environments where glucose is unavailable. We discovered that Tda1, activated by Snf1, phosphorylates Hxk2. Hxk2 has been reported to function as a transcriptional repressor. Therefore, we analyzed how Tda1 affects the expression of respiratory genes by RNA-seq analysis of glycerol-cultured cells.
Project description:The conserved Snf1/AMPK (AMP-activated protein Kinase) family is one of the central components in nutrient sensing and regulation of carbon metabolism in eukaryotes. It is also involved in several other processes such as stress resistance, invasive growth and ageing. Snf1 kinase is composed of a catalytic α-subunit Snf1, a regulatory γ-subunit Snf4 and one of three possible β-subunits, Sip1, Sip2 or Gal83. We used a systematic approach to study the role of the three β-subunits by analyzing all 7 possible combinations of β-subunit deletions together with the reference strain.
Project description:The conserved Snf1/AMPK (AMP-activated protein Kinase) family is one of the central components in nutrient sensing and regulation of carbon metabolism in eukaryotes. It is also involved in several other processes such as stress resistance, invasive growth and ageing. Snf1 kinase is composed of a catalytic alpha-subunit Snf1, a regulatory gamma-subunit Snf4 and one of three possible beta-subunits, Sip1, Sip2 or Gal83. We used a systematic approach to study the role of the three beta-subunits by analyzing all 7 possible combinations of beta-subunit deletions together with the reference strain.
Project description:Snf1 and TORC1 are two global regulators that sense the nutrient availability and regulate the cell growth in yeast Saccharomyces cerevisiae. Here we undertook a systems biology approach to study the effect of deletion of these genes and investigate the interaction between Snf1 and TORC1 in regulation of gene expression and cell metabolism.
Project description:Three sets of DDA-based proteomics studies were performed to characterize Snf1-dependent phosphorylation kinetics in the yeast Saccharomyces cerevisiae. In vivo assays as well as in vitro kinase assays were performed. For each set, five biological replicates were analyzed.
Project description:Reg1 is a regulatory subunit of Glc7, the type 1 Ser/Thr protein phosphatase in the yeast Saccharomyces cerevisiae. The Reg1/Glc7 complex is responsible for the dephosphorylation and inactivation of the Snf1 protein kinase, thus controlling Snf1 functions (i.e. expression of glucose-repressed genes). Snf1 is also involved in the response to certain stresses, such as alkaline pH. Surprisingly, both snf1 and reg1 mutants are hypersensitive to high pH. We show here that this phenotype in the reg1 strain is unrelated to the role of Reg1 in regulating Snf1, but depends on the ability of Reg1 to interact with Glc7. Transcriptomic profiling of reg1 cells in the absence or the presence of high pH stress and biochemical analyses suggest that lack of Reg1 impedes the normal downregulation of Pma1 in response to high pH stress. Our results highlight a role of Reg1/Glc7 in the regulation of Pma1 function and hence in the overall cellular cation homeostatic mechanisms.
Project description:The yeast Saccharomyces cerevisiae thrives in sugar-rich environments by rapidly consuming glucose and favoring alcoholic fermentation. This strategy is tightly regulated by the glucose repression pathway, which prevents the expression of genes required for the utilization of alternative carbon source. Central to this regulatory network is the yeast ortholog of the heterotrimeric 5′AMP-activated protein kinase (AMPK), which adjusts gene expression in response to glucose availability. The activity of the yeast AMPK complex is primarily regulated by the phosphorylation state of its catalytic subunit Snf1, a process orchestrated by a balance between upstream kinases and phosphatases. Among the latter, the Protein Phosphatase 1 (PP1) complex Reg1/Glc7 plays a critical role in inhibiting Snf1 activity under glucose-rich conditions. Despite its importance, the precise mechanism by which glucose availability leads to Snf1 inhibition remains incompletely understood. Evidence suggests that hexokinase 2 (Hxk2) participates in this pathway, potentially coupling the early steps of glucose metabolism to Snf1 signaling. Notably, the toxic glucose analog 2-deoxyglucose (2DG)- which is phosphorylated by Hxk2 but not further metabolized- mimics glucose in its ability to repress Snf1, implicating glucose or 2DG phosphorylation as a key regulatory signal. Additionally, yeast AMPK activity correlates with 2DG resistance through mechanisms that are incompletely described. In this study, we performed a large-scale 2DG-resistance genetic screen to explore both the molecular basis of 2DG resistance and AMPK regulation in yeast. The identified mutations confer resistance either by reducing 2DG phosphorylation (e.g., mutations in HXK2) or by enhancing constitutive Snf1 activity, via gain-of-function alleles in AMPK subunits or loss-of-function mutations in REG1 and GLC7. We also describe a novel series of REG1 missense mutations, including reg1-W165G, that maintain basal, glucose-regulated Snf1 activity but fail to mediate 2DG-induced Snf1 inhibition. These findings position Reg1 as a central mediator in glucose sensing, possibly by sensing 2DG-derived -and by extension, glucose-derived- metabolites.
Project description:Chronologically aging yeast cells are prone to adaptive regrowth, whereby mutants with a survival advantage spontaneously appear and re-enter the cell cycle in stationary phase cultures. Adaptive regrowth is especially noticeable with short-lived strains, including those defective for SNF1, the homolog of mammalian AMP-activated protein kinase (AMPK). SNF1 becomes active in response to multiple environmental stresses that occur in chronologically aging cells, including glucose depletion and oxidative stress. SNF1 is also required for the extension of chronological lifespan (CLS) by caloric restriction (CR) as defined as limiting glucose at the time of culture inoculation. To identify specific downstream SNF1 targets responsible for CLS extension during CR, we screened for adaptive regrowth mutants that restore chronological longevity to a short-lived snf1∆ parental strain. Whole genome sequencing of the adapted mutants revealed missense mutations in TPR motifs 9 and 10 of the transcriptional co-repressor Cyc8 that specifically mediate repression through the transcriptional repressor Mig1. Another mutation occurred in MIG1 itself, thus implicating the activation of Mig1-repressed genes as a key function of SNF1 in maintaining CLS. Consistent with this conclusion, the cyc8 TPR mutations partially restored growth on alternative carbon sources and significantly extended CLS compared to the snf1∆ parent. Furthermore, cyc8 TPR mutations reactivated multiple Mig1-repressed genes, including the transcription factor gene CAT8, which is responsible for activating genes of the glyoxylate and gluconeogenesis pathways. Deleting CAT8 completely blocked CLS extension by the cyc8 TPR mutations on CLS, identifying these pathways as key Snf1-regulated CLS determinants.
Project description:Snf1 and TORC1 are two global regulators that sense the nutrient availability and regulate the cell growth in yeast Saccharomyces cerevisiae. Here we undertook a systems biology approach to study the effect of deletion of these genes and investigate the interaction between Snf1 and TORC1 in regulation of gene expression and cell metabolism. 3 mutant strains (snf1?, tor1?, snf1?tor1?) together with 1 reference strain grown under both glucose-limited or amonia-limited defined media with three biological replicates for each strain