Project description:Human induced pluripotent stem (iPS) cells are capable of differentiating into derivatives of the three embryonic germ layers both in vitro and in vivo. To date the the molecular differences between teratoma-forming cells and non-teratoma-forming cells has not been analysed. A cell line, B1, bears typical ES cell-like morphology, expression of pluripotency-associated genes, and in vitro pluripotency capacity, but fails to form teratomas after subcutaneously injected into immune-deficient mice based on histological analysis. Besides histological analysis, we characterized the tumors derived from line B1, and teratomas derived from bona fida iPS and ES (line H1) cells respectively, using microarray-based gene expression analysis. The expression levels of pluripotency-associated markers in B1 cells were comparable to that in iPS and ES cells, while the complexity of tissue expression commitment was decreased upon spontaneous differentiation of B1 cells as compared to iPS and ES cells. Total RNA obtained from HFF1 (human foreskin fibroblast) cells, line B1, iPS-A4, iPS-B4 and ES (line H1) cells, and their derived tumors in immune-deficient mice.
Project description:Human induced pluripotent stem (iPS) cells are capable of differentiating into derivatives of the three embryonic germ layers both in vitro and in vivo. To date the the molecular differences between teratoma-forming cells and non-teratoma-forming cells has not been analysed. A cell line, B1, bears typical ES cell-like morphology, expression of pluripotency-associated genes, and in vitro pluripotency capacity, but fails to form teratomas after subcutaneously injected into immune-deficient mice based on histological analysis. Besides histological analysis, we characterized the tumors derived from line B1, and teratomas derived from bona fida iPS and ES (line H1) cells respectively, using microarray-based gene expression analysis. The expression levels of pluripotency-associated markers in B1 cells were comparable to that in iPS and ES cells, while the complexity of tissue expression commitment was decreased upon spontaneous differentiation of B1 cells as compared to iPS and ES cells.
Project description:Human induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells differentiate into cells of the endothelial lineage, but derivation of cells with human umbilical cord blood endothelial colony forming cell (ECFC)-like properties has not been reported. Here we describe a novel serum- and stromal cell-free ECFC differentiation protocol for the derivation of clinically relevant numbers of ECFCs (> 108) from hiPS and hES cells. We identified NRP-1+CD31+ selected cells that displayed a stable endothelial phenotype exhibiting high clonal proliferative potential, extensive replicative capacity, formation of human vessels that inosculated with host vasculature upon transplantation, but lacking in teratoma formation in vivo. We also identified NRP-1-VEGF165-KDR-mediated activation of KDR as a critical mechanism for the emergence and derivation of ECFCs from hiPS and hES cells. This protocol advances the field by generating highly replicative but stable endothelial cells for use as a potential cell therapy for human clinical disorders. Transcriptome sequencing of undifferentiated day 0 hiPS cells, Day 3 differentiated hiPS-derived mesoderm proginator cells, Day 12 hiPS-derived NRP-1+CD31+ cells, Day 12 H9-hES-derived NRP-1+CD31+ cells and cord blood-derived Endothelial colony forming cells.
Project description:We have developed a method to generate muscle stem cells from pluripotent stem cells via teratoma formation. The goal of this study is to compare the transcriptome of a7+ VCAM+ myogenic cells derived from pluripotent stem cells versus satellite cells
Project description:The use of human pluripotent stem cells (hPSCs) in cell therapy is hindered by the tumorigenic risk from residual undifferentiated cells. Here we performed a high-throughput screen of over 52,000 small molecules, and identified 15 highly selective cytotoxic inhibitors of hPSCs (PluriSIns). Cellular and molecular analyses revealed that the most selective compound, PluriSIn #1, is a pluripotent-specific inhibitor of stearoyl-coA desaturase (SCD1), the key enzyme in the biosynthesis of monounsaturated fatty acids (MUFA). SCD1 inhibition in hPSCs induced ER stress, protein synthesis attenuation, and apoptosis of these cells, revealing that MUFA biosynthesis is crucial for their survival. PluriSIn #1 was also cytotoxic toward the ICM cells of mouse embryos, indicating that the dependence on SCD1 is inherent to the pluripotent state. Finally, application of PluriSIn #1 prevented teratoma formation from tumorigenic undifferentiated cells. Our novel method to eliminate undifferentiated cells from culture should thus increase the safety of hPSC-based treatments. Expression data from undifferentiated and differentiated human embryonic stem cells. Total RNA was isolated from undifferentiated human pluripotent stem cells grown on matrigel with mTeSR1 medium, or from early endodermal progenitor cells differentiated from human embryonic stem cells.