Project description:Seedless varieties are of particular importance to the table-grape and raisin industries. Gibberellin (GA) application is widely used in the early stages of seedless berry development to increase berry size and economic value. However, the underlying mechanism of GA induction of berry enlargement is not well understood. Here, RNA-sequencing analysis of âCentennial Seedlessâ (Vitis vinifera L.) berries treated with GA3 12 days after flowering is reported.
Project description:Berry skin total protein from Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay and Semillon. Treatments were control (well-watered) versus restricted irrigation (water-deficit). Samples were taken from harvest-ripe whole berry clusters following a seasonal water deficit in treatment vines. A comparative analysis between the cultivars and treatments was performed. Associated dataset identifiers: GSE72421, PRJNA268857.
Project description:Somatic variation is a valuable source of trait diversity in clonally propagated crops. In grapevine, which has been clonally propagated worldwide for centuries, important phenotypes such as white berry colour are the result of genetic changes caused by transposable elements. Additionally, epiallele formation may play a role in determining geo-specific (‘terroir’) differences in grapes and thus ultimately in wine. This genomic plasticity might be co-opted for crop improvement via somatic embryogenesis, but that depends on a species-specific understanding of the epigenetic regulation of transposable element (TE) expression and silencing in these cultures. For this reason, we used whole-genome bisulphite sequencing, mRNA sequencing and small RNA sequencing to study the epigenetic status and expression of TEs in embryogenic callus, in comparison with leaf tissue.
Project description:Auxin treatment of grape (Vitis vinifera L.) berries delays ripening by inducing changes in gene expression and cell wall metabolism and could combat some deleterious climate change effects. Auxins are inhibitors of grape berry ripening and their application may be useful to delay harvest to counter effects of climate change. However, little is known about how this delay occurs. The expression of 1892 genes was significantly changed compared to the control during a 48 h time-course where the auxin 1-naphthaleneacetic acid (NAA) was applied to pre-veraison grape berries. Principal component analysis showed that the control and auxin-treated samples were most different at 3 h post-treatment when approximately three times more genes were induced than repressed by NAA. There was considerable cross-talk between hormone pathways, particularly between those of auxin and ethylene. Decreased expression of genes encoding putative cell wall catabolic enzymes (including those involved with pectin) and increased expression of putative cellulose synthases indicated that auxins may preserve cell wall structure. This was confirmed by immunochemical labelling of berry sections using antibodies that detect homogalacturonan (LM19) and methyl-esterified homogalacturonan (LM20) and by labelling with the CMB3a cellulose-binding module. Comparison of the auxin-induced changes in gene expression with the pattern of these genes during berry ripening showed that the effect on transcription is a mix of changes that may specifically alter the progress of berry development in a targeted manner and others that could be considered as non-specific changes. Several lines of evidence suggest that cell wall changes and associated berry softening are the first steps in ripening and that delaying cell expansion can delay ripening providing a possible mechanism for the observed auxin effects.
Project description:Grapevine cluster compactness is a multi-componential trait of agronomical interest; it greatly influences the vineyard management and the visual aspect of table grape. Clusters with greater compactness are more susceptible to disease. The compactness can be break down in a patchwork of agronomical traits, each having agronomical importance that includes parameters related to inflorescence and cluster architecture (cluster length and width, length of pedicels, etc.), fruitfulness (number of berries, number of seeds) and berry (size, shape, volume...). Through visual evaluation of a collection of 730 clones from the cultivar Tempranillo and 501 clones from Garnacha Tinta we identified and fully phenotyped distinct clones which transcriptomes were compared at key developmental stages in order to identify the genes playing a role in mechanisms involved in cluster compactness such as the ones determining number of berries, cluster length or berry size. Key genes involved in this process were identified. The findings lead us to hypothesize that berry size and/or number at ripening are greatly influenced by the rate of cell replication in flowers during the first stages after pollination.
Project description:Field systems biology of grapevine red blotch reveals the impact of viral infections on the transcriptional and hormonal regulation of berry ripening