Project description:Instability in the composition of gut bacterial communities, referred as dysbiosis, has been associated with important human intestinal disorders such as CrohnM-bM-^@M-^Ys disease and colorectal cancer. Here, we show that dysbiosis coupled to Nod2 or Rip2 deficiency suffices to cause an increased risk for intestinal inflammation and colitis-associated carcinogenesis in mice. Aggravated epithelial lesions and dysplasia upon chemical-induced injury associated with loss of Nod2 or Rip2 can be prevented by antibiotics or anti-IL6R treatment. Nod2-mediated risk for intestinal inflammation and colitis-associated tumorigenesis is communicable through maternally-transmitted microbiota even to wild-type hosts. Disease progression was identified to drive complex NOD2-dependent changes of the colonic-associated microbiota. Reciprocal microbiota transplantation rescues the vulnerability of Nod2-deficient mice to colonic injury. Altogether, our results unveil an unexpected function for NOD2 in shaping a protective assembly of gut microbial communities, providing a rationale for intentional manipulation of genotype-dependent dysbiosis as a causative therapeutic principle in chronic intestinal inflammation. Analysis used RNA extracted from colonic mucosa of untreated, antibiotics-treated or metronidazole-treated C57Bl/6J and Nod2-deficient mice in CAC model. Direct comparisons were performed as follow: C57Bl/6J untreated mice vs Nod2-deficient untreated mice, C57Bl/6J antibiotics-treated mice vs Nod2-deficient antibiotics-treated mice, C57Bl/6J metronidazole-treated mice vs Nod2-deficient metronidazole-treated mice, C57Bl/6J untreated mice vs C57Bl/6J antibiotics-treated mice, C57Bl/6J untreated mice vs C57Bl/6J metronidazole-treated mice, Nod2-deficient untreated mice vs Nod2-deficient antibiotics-treated mice, Nod2-deficient untreated mice vs Nod2-deficient metronidazole-treated mice. Indirect comparisons with control data were made across multiple arrays with raw data pulled from different channels for data analysis.
Project description:Instability in the composition of gut bacterial communities, referred as dysbiosis, has been associated with important human intestinal disorders such as Crohn’s disease and colorectal cancer. Here, we show that dysbiosis coupled to Nod2 or Rip2 deficiency suffices to cause an increased risk for intestinal inflammation and colitis-associated carcinogenesis in mice. Aggravated epithelial lesions and dysplasia upon chemical-induced injury associated with loss of Nod2 or Rip2 can be prevented by antibiotics or anti-IL6R treatment. Nod2-mediated risk for intestinal inflammation and colitis-associated tumorigenesis is communicable through maternally-transmitted microbiota even to wild-type hosts. Disease progression was identified to drive complex NOD2-dependent changes of the colonic-associated microbiota. Reciprocal microbiota transplantation rescues the vulnerability of Nod2-deficient mice to colonic injury. Altogether, our results unveil an unexpected function for NOD2 in shaping a protective assembly of gut microbial communities, providing a rationale for intentional manipulation of genotype-dependent dysbiosis as a causative therapeutic principle in chronic intestinal inflammation.
Project description:Instability in the composition of gut bacterial communities, referred as dysbiosis, has been associated with important human intestinal disorders such as Crohn’s disease and colorectal cancer. Our data showed that Nod2-mediated risk of intestinal inflammation in colitis model is communicable to WT mice by cohousing. Here, we investigated if Nod2-deficient mice microbiota is able to change transcript profiles in Nod2-immunocompetent mice (C57Bl6/J mice) independently of colitis. Analysis used RNA extracted from colonic mucosa of C57Bl/6J mice co-housed with Nod2-deficient mice and C57Bl/6J mice alone. Direct comparisons of 4 biologicals replicates of C57Bl/6J mice cohoused with Nod2-deficient mice vs C57Bl/6J mice were performed.
Project description:Instability in the composition of gut bacterial communities, referred as dysbiosis, has been associated with important human intestinal disorders such as Crohn’s disease and colorectal cancer. Our data showed that Nod2-mediated risk of intestinal inflammation in colitis model is communicable to WT mice by cohousing. Here, we investigated if Nod2-deficient mice microbiota is able to change transcript profiles in Nod2-immunocompetent mice (C57Bl6/J mice) independently of colitis.
Project description:Single-cell studies have revealed that intestinal macrophages maintain gut homeostasis through the balanced actions of reactive (inflammatory) and tolerant (non-inflammatory) subpopulations. How such balance is impaired in inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), remains unresolved. Here, we define colon-specific macrophage states and reveal the critical role of non-inflammatory colon-associated macrophages (ni-ColAMs) in IBD recovery. Through trans-scale analyses—integrating computational transcriptomics, proteomics, and in vivo interventional studies—we identified GIV (CCDC88A) as a key regulator of ni-ColAMs. GIV emerged as the top-ranked gene in ni-ColAMs that physically and functionally interacts with NOD2, an innate immune sensor implicated in CD and UC. Myeloid-specific GIV depletion exacerbates infectious colitis, prolongs disease, and abolishes the protective effects of the NOD2 ligand, muramyl dipeptide, in colitis and sepsis models. Mechanistically, GIV’s C-terminus binds the terminal leucine-rich repeat (LRR#10) of NOD2 and is required for NOD2 to dampen inflammation and clear microbes. The CD-associated 1007fs NOD2-variant, which lacks LRR#10, cannot bind GIV—providing critical insights into how this clinically relevant variant impairs microbial sensing and clearance. These findings illuminate a critical GIV-NOD2 axis essential for gut homeostasis and highlight its disruption as a driver of dysbiosis and inflammation in IBD.
Project description:Two C57BL/6 mice colonies maintained in two rooms in the same specific pathogen free (SPF) facility were found to have different gut microbiota and a mucus phenotype specific for each colony. The thickness and growth of the colon mucus was similar in the two colonies, but one colony had mucus not penetrable to bacteria or bacterial-sized beads, similar to what occurs in free-living wild mice. On the other hand, the other colony had an inner mucus layer that was penetrable to bacteria and beads. These different properties of the mucus in the two rooms were dependent on the microbiota, as the phenotypes were transmissible by transfer of ceacal microbiota to germ-free mice. Mice with an impenetrable mucus layer had increased amounts of Erysipelotrichi, while mice with a penetrable mucus layer had higher levels of Proteobacteria and TM7 bacteria in the distal colon mucus. Thus bacteria affect mucus barrier properties in ways that can have implications for health and disease.
Project description:Dysbiosis in the gut microbiota impacts several systemic diseases. One possible mechanism is the migration of perturbed intestinal immunocytes to extra-intestinal tissues. Combining the Kaede photoconvertible mouse model and single-cell genomics, we generated a detailed map of migratory trajectories from the colon, at baseline and during intestinal and extra-intestinal inflammation. All colonic lineages emigrated from the colon in an S1P-dependent manner, dominated by B lymphocytes with a large continuous circulation of follicular B cells, which carried a gut-imprinted transcriptomic signature. T cell emigration was more selective, with distinct groups of RORg+ cells and IEL-like CD160+ T cells in the spleen. Gut inflammation curtailed emigration, except for DCs disseminating to lymph nodes. Colon emigrating cells distributed differentially to tumor, skin inflammation, or arthritic synovium, the former dominated by myeloid cells in a chemokine-dependent manner. These results thus reveal specific cellular trails originating in the gut, influenced by microbiota, which can shape peripheral immunity.
Project description:In the DSS-induced colitis model, the epithelial damage and resulting inflammation is restricted to the colon, with a potential influence on the microbial composition in the adjacent cecum. Several studies have reported changes of the gut microbiota in the DSS-induced colitis model and other mouse models of IBD. Furthermore, metaproteomics analysis of the gut microbiome in a mouse model of Crohn’s disease demonstrated that disease severity and location are microbiota-dependent, with clear evidence for the causal role of bacterial dysbiosis in the development of chronic ileal inflammation. We have developed a refined model of chronic DSS-induced colitis that reflects typical symptoms of human IBD without a risky body weight loss usually observed in DSS models [Hoffmann et al., submitted]. In this study, we used metaproteomics to characterize the disease-related changes in bacterial protein abundance and function in the refined model of DSS-induced colitis. To assess the structural and functional changes, we applied 16S rRNA gene sequencing and metaproteomics analysis of the intestinal microbiota in three different entities of the intestinal environment, i.e. colon mucus, colon content and cecum content.