Project description:RRBS data from TRACERx non-small cell lung cancer (NSCLC) tumours and matched normal adjacent tissue.
TRACERx (TRAcking Cancer Evolution through therapy (Rx)) is a prospective cohort study designed to investigate intratumor heterogeneity (ITH) in relation to clinical outcome, and to determine the clonal nature of driver events and evolutionary processes in early stage non-small cell lung cancer (NSCLC).
Project description:TRACERx (TRAcking Cancer Evolution through therapy (Rx)) is a prospective cohort study designed to investigate intratumor heterogeneity (ITH) in relation to clinical outcome, and to determine the clonal nature of driver events and evolutionary processes in early stage non-small cell lung cancer (NSCLC).
Project description:TRACERx (TRAcking Cancer Evolution through therapy (Rx)) is a prospective cohort study designed to investigate intratumor heterogeneity (ITH) in relation to clinical outcome, and to determine the clonal nature of driver events and evolutionary processes in early stage non-small cell lung cancer (NSCLC).
Project description:Whole exome sequencing of tumors and paired adjacent uninvolved tissues from 222 early stage NSCLC patients, in order to identify genomic drivers present in early-stage non-small cell lung cancer and determine the overall tumor mutational burden in early-stage non-small cell lung cancer.
Project description:Plasma samples from 100 early stage (I to IIIA) non–small-cell lung cancer (NSCLC) patients and 100 non-cancer controls were screened for 754 circulating microRNAs via qRT-PCR, using TaqMan MicroRNA Arrays. Our objective was to identify a panel of circulating microRNAs in plasma that will contribute to early detection of lung cancer.
Project description:TRACERx (TRAcking Cancer Evolution through therapy (Rx)) is a prospective cohort study designed to investigate intratumor heterogeneity (ITH) in relation to clinical outcome, and to determine the clonal nature of driver events and evolutionary processes in early stage non-small cell lung cancer (NSCLC).
This study looks at multi-region RRBS data from the TRACERx cohort selected for quantity of material available and high tumour purity
Project description:Lung cancer is the second most commonly diagnosed cancer and the leading cause of cancer death worldwide, of which approximately 85% are non-small cell lung cancer (NSCLC). The overall survival (OS) of patients with advanced NSCLC was significantly prolonged with immune checkpoint inhibitors (ICIs) targeting the programmed cell death-1 (PD-1) and programmed death-ligand 1 (PD-L1) axis. For early-stage lung cancer, the 5-year survival rate for patients ranges from 80% in stage IA to 41% in stage IIIA, and many cases relapse after surgical resection. Currently, multiple clinical trials have manifested the encouraging efficacy of neoadjuvant immunotherapy in stage I-IIIA resectable NSCLC. However, the effect of immunotherapy in ultra early-stage NSCLC patients with micro-invasive or even pre-invasive lesions remains unclear. In this study, we aimed to evaluate the activity and safety of sintilimab on high-risk ground glass opacity lesions in multiple primary lung cancer patients.
Project description:TRACERx (TRAcking Cancer Evolution through therapy (Rx)) is a prospective cohort study designed to investigate intratumor heterogeneity (ITH) in relation to clinical outcome, and to determine the clonal nature of driver events and evolutionary processes in early stage non-small cell lung cancer (NSCLC). This study looks at the multi-region RNAseq data from the TRACERx100 cohort with high enough quality RNA available. There is RNAseq data from 164 regions (64 patients).
Project description:Aberrant serum N-glycan profiles have been observed in multiple cancers including non-small-cell lung cancer (NSCLC), yet the potential of N-glycans in the early diagnosis of NSCLC remains to be determined. Here, serum N-glycan profiles of 275 NSCLC patients and 309 healthy controls were characterized by MALDI-TOF-MS. The levels of serum N-glycans and N-glycosylation patterns were compared between NSCLC and control groups. In addition, a panel of N-glycan biomarkers for NSCLC diagnosis was established and validated using machine learning algorithms. As a result, a total of 54 N-glycan structures were identified in human serum. Compared with healthy controls, 29 serum N-glycans were up- or down-regulated in NSCLC patients. N-glycan abundance in different histological types or clinical stages of NSCLC presented differentiated changes. Furthermore, an optimal biomarker panel of 8 N-glycans was constructed based on logistic regression, with an AUC of 0.86 in the validation set. Notably, this model also showed a desirable capacity in distinguishing early-stage patients from healthy controls (AUC = 0.88). In conclusion, our work highlights the abnormal N-glycan profiles in NSCLC and provides supports for the promising potential of N-glycan panels in clinical NSCLC detection.
Project description:Lung cancer has the highest morbidity and mortality rates. Approximately 20% of patients with stage T1 non-small cell lung cancer (NSCLC) have mediastinal (N2) lymph node metastasis. The mechanism underlying N2 lymph node metastasis in stage T1 NSCLC remains unclear. To explore this mechanism, T1N0M0 and T1N2M0 NSCLC samples were subjected to single-cell sequencing.