Project description:Phytophthora infestans is most notorious oomycete causing a devastating disease on tomato called late blight. The molecular mechanisms involved in host-parasite interaction is still unexplored well. Investigation of changes in gene expression profile after pathogen infection to find out the mechanisms involved in infection process Second full expanded leaves from both healthy tomato plants (non-inoculated) and diseased tomato plants inoculated with Phytophthora infestans inoculum were used to extract total RNA for microarry analysis 12 hours post inoculation time.
Project description:This study aimed to investigate the physiological and molecular responses of Solanum lycopersicum (tomato) to Phytophthora cinnamomi infection. The initial defense response in tomato seeds included the production of reactive oxygen species (ROS) and callose deposition. Screening of commercial tomato varieties revealed varying levels of susceptibility, with the variety Marmande exhibiting heightened vulnerability. Three days post-inoculation, Marmande showed increased expression of genes associated with ROS generation, and biosynthesis pathways for phenylpropanoids and flavonoids. Additionally, 850 genes related to cell wall remodeling, including those involved in lignin biosynthesis and pectin methyl esterase inhibitors (PMEIs), were significantly upregulated. Seven days post-inoculation, a stronger transcriptional response was observed, with activation of ethylene (ET) and jasmonic acid (JA) signaling pathways, while salicylic acid (SA) showed minimal activity. Metabolomic analysis of infected roots revealed elevated levels of metabolites linked to lycopene, flavonoids, and phenylpropanoids. Furthermore, infected roots exhibited a significant reduction in pectin levels, which was corroborated by in vitro assays showing zoospore-mediated pectin degradation. These results suggest that degradation of root pectin is a key mechanism facilitating zoospore invasion in susceptible tomato hosts. This study provides new insights into the molecular mechanisms underlying host-pathogen interactions and identifies potential targets for managing Phytophthora cinnamomi-induced diseases in crops.
Project description:To characterize the PTI response of tomato and the effect of the delivery of a subset of effectors, we performed an RNA-seq analysis of tomato Rio Grande prf3 leaves challenged with either the flgII-28 peptide or the following bacterial strains: Agrobacterium tumefaciens GV2260, Pseudomonas fluorescens 55, Pseudomonas putida KT2440, Pseudomonas syringae pv. tomato (Pst) DC3000, Pst DC3000 deltahrcQ-U deltafliC and Pst DC3000 deltaavrPto deltaavrPtoB. NOTE: Samples in SRA were assigned the same sample accession. This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:Tomato spotted wilt virus (TSWV), transmitted by small insects known as thrips, is one of the major threats to tomato productivity across the globe. In addition to tomato, this virus infects more than 1000 other plants belonging to 85 families and is a cause of serious concern. Very little, however, is known about the molecular mechanim of TSWV induced signaling in plants. Here, we used a TMT-based quantitative proteome analysis to investigate the protein profiles of tomato leaves of two cultivars (cv 2621and 2689; susceptible and resistant respectively to TSWV infection) following TSWV inoculation. This approach resulted in the identification of 5112 proteins of which 1022 showed significant changes in response to TSWV. While the proteome of resistant cultivar majorly remain unaltered, proteome of susceptible cultivar showed distint differences following TSWV infection. TSWV modulated proteins in tomato included those with functions previously implicated in plant defence incuding secondary metabolism, ROS detoxification, MAP kinase signaling, Calcium signaling and jasmonate biosynthesis, among others. Taken together, these results provide new insights into the TSWV induced signaling in tomato leaves and may be useful in future to manage this deadly disease of plants.