Project description:DamID LaminB1 data were generated in POU2F1-/- MEFs to study the potential role of POU2F1/Oct1 in genome - nuclear lamina interactions. DamID LaminA data were generated in NPCs and Astrocytes to study similarities/differences between LaminA and LaminB1 binding. Comparison of MEF wt versus MEF POU2F1-/-. Comparison of LaminA (NPC & AC) with LaminB1 (NPC & AC data in GSE17051)
Project description:DamID LaminB1 data were generated in POU2F1-/- MEFs to study the potential role of POU2F1/Oct1 in genome - nuclear lamina interactions. DamID LaminA data were generated in NPCs and Astrocytes to study similarities/differences between LaminA and LaminB1 binding. The procedure to arrive at the provided Hidden Markov Model (HMM) state calls is as follows: We fitted a two-state HMM whereby emissions are distributed as Student's t variables. Mean and variance of DamID signals differ between states, but the degree of freedom (nu) is the same. Gaps in the probe coverage were filled by evenly spaced null probe-values. The parameters were estimated by an adaptation of the ECME algorithm to the HMM framework, showing faster convergence than regular EM when nu is unknown (Filion et al., Cell, 2010). State calls were derived through the Viterbi algorithm. This process was repeated separately for each cell type, yielding per-probe calls. Probes in the ‘bound’ (1) state are indicated as LAD-probes, probes in the ‘unbound’ (0) state as inter-LAD-probes.
Project description:The three-dimensional organization of chromosomes within the nucleus and its dynamics during differentiation are largely unknown. We present a genome-wide analysis of the interactions between chromatin and the nuclear lamina during differentiation of mouse embryonic stem cells (ESCs) into lineage-committed neural precursor cells (NPCs) and terminally differentiated astrocytes. Chromatin in each of these cell types shows a similar organization into large lamina associated domains (LADs), which represent a transcriptionally repressive environment. During sequential differentiation steps, lamina interactions are progressively modified at hundreds of genomic locations. This remodeling is typically confined to individual transcription units and involves many genes that determine cellular identity. From ESCs to NPCs, the majority of genes that move away from the lamina are concomitantly activated. Strikingly, a significant amount remain inactive yet become primed for activation by further differentiation. These results suggest that lamina-genome interactions are widely involved in the control of gene expression programs during lineage commitment and terminal differentiation. laminB1-chromatin interactions were assayed in 4 different mouse cell-types. For each cell-type there were 2 biological replicates, that were hybridized in a dye-swap design.
Project description:We report the first RNA profiing of mammalian neural cells grown in vitro. About 50 million reads are generated by RNA-seq from rat astrocytes, neurons and oligodendrocyte precursor cells in primary culture. These data are compared with theose generated from the correponding mouse neural cells that are acutely purified from brains. Cross-species RNA-seq data analysis revealed hundreds of genes that are differentially expressed between cultured and acutely purified cells. Astrocytes have more such genes compared to neurons and oligodendrocyte precursor cells, indicating that signalling pathways are greatly perturbed in cultured astrocytes. mRNA profiles of rat astrocytes, neurons and oligodendrocyte precursor cells cultured in vitro
Project description:We present Nanopore-DamID, a method to simultaneously detect cytosine methylation and DNA-protein interactions from single molecules, via selective sequencing of adenine-labelled DNA. Assaying LaminB1 and CTCF binding with Nanopore-DamID, we identify escape from LAD-associated repression of hypomethylated promoters amidst generalised hypermethylation of LaminB1-associated regulatory elements. We detect novel CTCF binding sites in highly repetitive regions, and allele-specific CTCF binding to imprinted genes and the active X chromosome. Nanopore-DamID highlights the importance of DNA methylation to transcription factor activity.
Project description:We report the first RNA profiing of mammalian neural cells grown in vitro. About 50 million reads are generated by RNA-seq from rat astrocytes, neurons and oligodendrocyte precursor cells in primary culture. These data are compared with theose generated from the correponding mouse neural cells that are acutely purified from brains. Cross-species RNA-seq data analysis revealed hundreds of genes that are differentially expressed between cultured and acutely purified cells. Astrocytes have more such genes compared to neurons and oligodendrocyte precursor cells, indicating that signalling pathways are greatly perturbed in cultured astrocytes.
Project description:Maps of genomic regions in proximity to the nuclear lamina were determined in primary hepatocytes from wild type and Tm7sf2/NET47 KO mouse, C57BL/6 strain, using DamID with a Dam-Lamin B1-encoding lentivirus.
Project description:Ectopic expression of the reprogramming factors OCT4, SOX2, or NANOG into human astrocytes in specific cytokine/culture conditions activated the neural stem gene program and induced generation of cells expressing neural stem/precursor markers. Here we compare the whole gene expression profile of primary human astrocytes (Astro) with neural stem cells (HNSC) derived from astrocytes reprogramming