Project description:Extracellular vesicles (EVs) are key mediators of intercellular communication, and often play critical roles in host-parasite interactions by facilitating parasite’s physiology and pathogenesis. Theileria annulata, an apicomplexan parasite, induces profound changes in host cells, leading to uncontrolled proliferation, apoptosis resistance, and increased invasiveness. In this study, we performed the comprehensive proteomic and small RNA analysis of EVs isolated from a T. annulata Kashi isolate-infected bovine lymphocyte cell line (TaXJS), B cell line (TaBC), dendritic cell line (TaDC), and from the sera of cattle before and after infection. Our label-free LC-MS/MS proteomics identified 2580 proteins, while small RNA sequencing revealed 6635 miRNAs associated with parasite development, host invasion, and immune evasion. Functional enrichment analyses recognized vesicular components involved in key pathways of the parasite-host such as ECM-receptor interaction, oxidative phosphorylation, and proton transport. These findings highlight the potential of Theileria-derived EVs in modulating host responses and their potential as therapeutic and vaccine targets.
Project description:BackgroundBovine theileriosis results from infection with obligate intracellular protozoa of the genus Theileria. The phylogenetic relationships between two isolates of Theileria annulata, and 36 Theileria spp., as well as 6 outgroup including Babesia spp. and coccidian protozoa were analyzed using the 18S rRNA gene sequence.MethodsThe target DNA segment was amplified by PCR. The PCR product was used for direct sequencing. The length of the 18S rRNA gene of all Theileria spp. involved in this study was around 1,400 bp.ResultsA phylogenetic tree was inferred based on the 18S rRNA gene sequence of the Iran and Iraq isolates, and other species of Theileria available in GenBank. In the constructed tree, Theileria annulata (Iran vaccine strain) was closely related to other T. annulata from Europe, Asia, as well as T. lestoquardi, T. parva and T. taurotragi all in one clade.ConclusionPhylogenetic analyses based on small subunit ribosomal RNA gene suggested that the percent identity of the sequence of Iran vaccine strain was completely the same as Iraq sequence (100% identical), but the similarity of Iran vaccine strain with other T. annulata reported from China, Spain and Italy determined the 97.9 to 99.9% identity.
Project description:The experiment investigates bovine gene expression in response to BW720c treatment in uninfected and Theileria annulata-infected cell cultures Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. 50% of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of expression and chromatin modification. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and reversible manner.
Project description:The experiment investigates bovine gene expression in response to LPS in uninfected and Theileria annulata-infected cell cultures A subset of genes are identified which are activated in response to LPS stimulation with further modulation due to parasite infection.
Project description:Extracellular vesicles (EVs) are key mediators of intercellular communication, and often play critical roles in host-parasite interactions by facilitating parasite’s physiology and pathogenesis. Theileria annulata, an apicomplexan parasite, induces profound changes in host cells, leading to uncontrolled proliferation, apoptosis resistance, and increased invasiveness. In this study, we performed the comprehensive proteomic and small RNA analysis of EVs isolated from a T. annulata Kashi isolate-infected bovine lymphocyte cell line (TaXJS), B cell line (TaBC), dendritic cell line (TaDC), and from the sera of cattle before and after infection. Our label-free LC-MS/MS proteomics identified 2580 proteins, while small RNA sequencing revealed 6635 miRNAs associated with parasite development, host invasion, and immune evasion. Functional enrichment analyses recognized vesicular components involved in key pathways of the parasite-host such as ECM-receptor interaction, oxidative phosphorylation, and proton transport. These findings highlight the potential of Theileria-derived EVs in modulating host responses and their potential as therapeutic and vaccine targets.
Project description:Investigation of parasite (T. annulata) gene expression over the course of the life-cycle (sporozoite->macroschizont->merozoite->piroplasm). The study focused on the expression of known and putative transcription factors, in particular members of the ApiAP2 gene family. Up-stream motifs associated with stage-specifically expressed genes were identified during the course of the analysis.