Project description:This SuperSeries is composed of the following subset Series: GSE31955: Effect of miR-144/miR451 expression on TC-1 lung epithelial cell responses to influenza infection for 24 hours [Expression] GSE31956: Effect of miR-144/miR451 expression on TC-1 lung epithelial cell responses to influenza infection for 24 hours [RT-PCR] Refer to individual Series
Project description:Antiviral responses must be regulated to rapidly defend against infection while minimizing inflammatory damage, but the mechanisms for establishing the magnitude of response within an infected cell are not well understood. miRNAs are small non-coding RNAs that negatively regulate protein levels by binding target sequences on their cognate mRNA. Here we identify miR-144 as a negative regulator of the host antiviral response. Ectopic expression of miR-144 resulted in increased replication of three RNA viruses, influenza, EMCV, and VSV, in primary mouse lung epithelial cells. To elucidate the mechanism whereby miR-144 increases influenza replication within lung epithelial cells, TC-1 cells stably over-expressing miR-144 were infected with influenza A for 24 hours and the transcriptional profile was compared with those of infected control cells. This systems biology approach identified the transcriptional network regulated by miR-144 and demonstrate that it controls the TRAF6/IRF7 antiviral response by post-transcriptionally suppressing TRAF6 levels. In vivo ablation of miR-144 reduced influenza replication within the lung. TC-1 lung epithelial cells stably expressing miR144+miR451 or control vector were unstimulated (n=1) or infected with Influenza A/PR/8/34 (MOI=5) for 24 hours (n=3).
Project description:Antiviral responses must be regulated to rapidly defend against infection while minimizing inflammatory damage, but the mechanisms for establishing the magnitude of response within an infected cell are not well understood. miRNAs are small non-coding RNAs that negatively regulate protein levels by binding target sequences on their cognate mRNA. Here we identify miR-144 as a negative regulator of the host antiviral response. Ectopic expression of miR-144 resulted in increased replication of three RNA viruses, influenza, EMCV, and VSV, in primary mouse lung epithelial cells. To elucidate the mechanism whereby miR-144 increases influenza replication within lung epithelial cells, TC-1 cells stably over-expressing miR-144 were infected with influenza A for 24 hours and the transcriptional profile was compared with those of infected control cells. This systems biology approach identified the transcriptional network regulated by miR-144 and demonstrate that it controls the TRAF6/IRF7 antiviral response by post-transcriptionally suppressing TRAF6 levels. In vivo ablation of miR-144 reduced influenza replication within the lung.
Project description:Antiviral responses must be regulated to rapidly defend against infection while minimizing inflammatory damage, but the mechanisms for establishing the magnitude of response within an infected cell are not well understood. miRNAs are small non-coding RNAs that negatively regulate protein levels by binding target sequences on their cognate mRNA. Here we identify miR-144 as a negative regulator of the host antiviral response. Ectopic expression of miR-144 resulted in increased replication of three RNA viruses, influenza, EMCV, and VSV, in primary mouse lung epithelial cells. To elucidate the mechanism whereby miR-144 increases influenza replication within lung epithelial cells, immortalized murine Type I epithelial cells (Let1 cells) stably over-expressing miR-144 were infected with influenza A for 1 or 18 hours and the transcriptional profile was compared with those of infected control cells. This systems biology approach identified the transcriptional network regulated by miR-144 and demonstrated that it controls the TRAF6/IRF7 antiviral response by post-transcriptionally suppressing TRAF6 levels. In vivo ablation of miR-144 reduced influenza replication within the lung. 16 RNA samples from immortalized murine Type I airway epithelial cells (Let1 cells) were analyzed using Agilent microarrays. Cells expressing miR-144, miR-451, or a vector control (GFP) were analyzed after infection with PR8 influenza virus (MOI=5) for 1 or 18 hours.
Project description:Antiviral responses must be regulated to rapidly defend against infection while minimizing inflammatory damage, but the mechanisms for establishing the magnitude of response within an infected cell are not well understood. miRNAs are small non-coding RNAs that negatively regulate protein levels by binding target sequences on their cognate mRNA. Here we identify miR-144 as a negative regulator of the host antiviral response. Ectopic expression of miR-144 resulted in increased replication of three RNA viruses, influenza, EMCV, and VSV, in primary mouse lung epithelial cells. To elucidate the mechanism whereby miR-144 increases influenza replication within lung epithelial cells, immortalized murine Type I epithelial cells (Let1 cells) stably over-expressing miR-144 were infected with influenza A for 1 or 18 hours and the transcriptional profile was compared with those of infected control cells. This systems biology approach identified the transcriptional network regulated by miR-144 and demonstrated that it controls the TRAF6/IRF7 antiviral response by post-transcriptionally suppressing TRAF6 levels. In vivo ablation of miR-144 reduced influenza replication within the lung.
Project description:The temporal response of primary human alveolar adenocarcinoma epithelial cells (A549) infected with H5N1 influenza virus and H9N2 influenza A viruswere evaluated using the proteomics approaches (2D-DIGE combined with MALDI-TOF-MS/MS) at 24 hours post of the infection .
Project description:Rotaviruses (RVs) account for severe diarrhea in children and young animals globally. In the current study, the fecal samples of diarrheic calves from a beef farm in Inner Mongolia were screened for RVA by ELISA and RT- PCR, followed by culture of three positive RVA samples in the MA-104 cell line. After 10 blind passages, cytopathic effects (CPE) appeared as detachment, granulation, and clustering of the inoculated cells. The virus isolates were identified by RT-PCR (VP6 gene RVA) and ESI-LC-MS/MS for whole protein sequencing. The protein sequences demonstrated the presence of two strains from species A rotavirus and one RVB strain; RVA/Cow-tc/ CHN/35333/2019/G6P[5] was mixed with one RVB strain (RVB/Cow-tc/CHN/35334/2019/G5P[3]) in two samples, and RVA/Cow-tc/CHN/10927/2019/G8P[7] was found in one sample. They are of genotype constellations (G6-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3), (G8-P[7]-I5-R1-C1- M2-A1-N1-T1-E1-H1), and (G5-P[3]-I3-R5- C5-A5-N4-H5), respectively. Besides, phylogenetic analysis of the obtained sequences demonstrated viral evolution.