Project description:BackgroundIn recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods.ResultsWe report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga maritima (TmaSSB) and Thermotoga neapolitana (TneSSB). They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively). They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold) in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC) the melting temperature (Tm) was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively.ConclusionThe results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR).
Project description:A total of 16 strains of hyperthermophilic Thermotoga complete genome sequences viz. Thermotoga maritima (AE000512, CP004077, CP007013, CP011107, NC_000853, NC_021214, NC_023151, NZ_CP011107, CP011108, NZ_CP011108, CP010967 & NZ_CP010967), Thermotoga neapolitana (CP000916, & NC_011978) and Thermotoga thermarum (CP002351 & NC_015707) complete genome sequences were retrieved from NCBI BioSample database. ENDMEMO GC used for creation of data on GC content in Thermotoga sp. DNA sequences. Maximum GC content was observed in Thermotoga strains AE000512 & NC_000853 (69 %GC), followed by NZ_CP011108, CP011108, NZ_CP011107, NC_023151, NC_021214, CP011107 & CP004077 (68.5 %GC), followed by NZ_CP010967 & CP010967 (68.3 %GC), followed by CP000916, CP007013 & NC_011978 (68 %GC), followed by CP002351 & NC_015707 (67 %GC) strains. The use of GC dataset ratios helps in higher level hierarchical classification in Bacterial Systematics in addition to phenotypic and other genotypic characters.