Project description:Bacterial infections and cigarette smoking have been linked to exacerbations of respiratory disease including severe asthma and chronic obstructive pulmonary disease (COPD). Epidemiological studies have also shown increased incidences of respiratory tract infections even in young smokers. We have previously shown that cigarette smoke exacerbates the inflammatory response to influenza A virus (PLoS ONE. 2010 Oct 12;5(10): e13251) and nontypeable Haemophilus influenzae (Am J Respir Crit Care Med. 2009 Apr 15;179(8):666) infection. While it is well understood that cigarette smoke impairs respiratory host defense, little is known with respect to mechanisms driving the outcome of infection in smoke-exposed mice. In this study, we attempt to characterize the antibacterial responses of lung resident cells from smoke-exposed mice to TLR agonists and live pathogens by gene expression profiling and to compare similarities and differences of inflammatory profiles between mouse and man.
Project description:Oxidative stress as a result of cigarette smoking is an important etiological factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), a chronic steroid-insensitive inflammatory disease of the airways. The activity of the transcriptional co-repressor Histone deacetylase-2 (HDAC2) is dramatically reduced in COPD and cells exposed to oxidative stress or cigarette smoke. Moreover, curcumin (diferuloylmethane), a dietary polyphenol, at concentrations up to 1uM specifically restores cigarette smoke extract (CSE)- or oxidative stress- impaired HDAC2 activity. The aim of this study was to therefore identify any links through those gene sets that are affected by oxidative stress and subsequent treatment with curcumin in order to determine whether or not this could explain the impact of curcumin on restoration of oxidant impaired HDAC2 transcriptional co-repressor activity. Experiment Overall Design: Human PMA-differentiated U937 cells, unexposed or exposed to oxidative stress (100mM H2O2) were either left untreated or treated with curcumin (1 mM) for either 4 or 18 hr. Performed in triplicate
Project description:Oxidative stress as a result of cigarette smoking is an important etiological factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), a chronic steroid-insensitive inflammatory disease of the airways. The activity of the transcriptional co-repressor Histone deacetylase-2 (HDAC2) is dramatically reduced in COPD and cells exposed to oxidative stress or cigarette smoke. Moreover, curcumin (diferuloylmethane), a dietary polyphenol, at concentrations upto 1uM specifically restores cigarette smoke extract (CSE)- or oxidative stress- impaired HDAC2 activity. The aim of this study was to therefore identify any links through those gene sets that are affected by oxidative stress and subsequent treatment with curcumin in order to determine whether or not this could explain the impact of curcumin on restoration of oxidant impaired HDAC2 transcriptional co-repressor activity. Keywords: time course
Project description:Previous studies have shown that smoking induces oxidative stress and inflammation, known factors that coincide with the development and progression of silicosis. Nevertheless, the precise role of cigarette smoke exposure in silicosis and the underlying mechanisms are not clearly understood. Therefore, the objective of the present study was to determine the effect of smoking, if any, on silica-induced pulmonary response and the underlying mechanisms. Pulmonary toxicity and lung gene expression profiles were determined in male Fischer 344 rats exposed to air, crystalline silica, cigarette smoke or cigarette smoke plus crystalline silica. Silica exposure resulted in significant pulmonary toxicity which was further exacerbated by cigarette smoke exposure in the rats. Significant differences in the gene expression profiles were detected in the lungs of the rats exposed to cigarette smoke, silica or a combination of both compared with the control rats.
Project description:Cigarette smoking is the major cause of chronic inflammatory diseases such as Chronic Obstructive Pulmonary Disease (COPD). It is paramount to develop pharmacological interventions and delivery strategies against the cigarette smoke (CS) associated oxidative stress in COPD. This study in Wistar rats examined cysteamine in nanoemulsions to counteract the cigarette smoke distressed microenvironment. In vivo, 28 days of cigarette smoke and 15 days of cysteamine nanoemulsions treatment starting on 29th day consisting of oral and inhalation routes were established in Wistar rats. Additionally, we conducted inflammatory and epithelial-to-mesenchymal transition (EMT) studies in vitro in human bronchial epithelial cell lines (BEAS2B) using 5% cigarette smoke extract. Inflammatory and anti-inflammatory markers such as TNF-α, IL-6, IL-1ß, IL-8, IL-10, IL-13, have been quantified in bronchoalveolar lavage fluid (BALF) to evaluate the effects of the cysteamine nanoemulsions in normalizing the diseased condition. Histopathological analysis of the alveoli and the trachea showed the distorted, lung parenchyma and ciliated epithelial barrier, respectively. To obtain mechanistic insights into the cigarette smoke COPD rat model, “shotgun” proteomics of the lung tissues have been carried out using high-resolution mass spectrometry wherein genes such as ABI1, PPP3CA, PSMA2, FBLN5, ACTG1, CSNK2A1, and ECM1 exhibited significant differences across all the groups. Pathway analysis showed autophagy, signaling by receptor tyrosine kinase, cytokine signaling in immune system, extracellular matrix organization, and hemostasis, as the major contributing pathways across all the studied groups. This work offers new preclinical findings on how cysteamine taken orally or inhaled can combat cigarette smoke-induced oxidative stress.
Project description:Little is known about alteration of the global gene expression by cigarette smoke (CS) and few biomarkers for smoking-related harm are available. We used Affymetrix HG-U133A GeneChips to measure the transcriptomes in eight cultured lymphocyte samples exposed to cigarette smoke condensate (CSC) in vitro . The in vitro exposure of lymphocytes to CSC significantly changed expression levels of 2,266 genes many of which biologically interacted. They included genes encoding for xenobiotic metabolism and oxidative stress-response (e.g. Nrf2 and AhR signaling pathways), inflammation/immune response (e.g. cytokines), apoptosis, cell cycle and tumorigenesis. However, the magnitude of expression responses for some genes showed high inter-individual variability. Experiment Overall Design: The goals of this study were to evaluate novel gene expression profiles and pathways affected by cigarette smoke condensate (CSC), and to identify potential biomarkers for cigarette smoke exposure and harm. To this end, we isolated the PBMC from eight light smokers, cultured the cells in vitro and exposed them to 2R4F CSC, then determined the gene expression profiles with Affymetrix microarray and analyzed alteration of global gene expression after exposure to CSC.
Project description:Rage null mice exposed to cigarette smoke demonstrate attenuated inflammatory, oxidative and ER stress responses in alveolar macrophages
Project description:Purpose: Globally, many jurisdictions are legalizing or decriminalizing cannabis, creating a potential public health issue that would benefit from experimental evidence to inform policy, government regulations, and user practices. Tobacco smoke exposure science has created a body of knowledge that demonstrates the conclusive negative impacts on respiratory health; similar knowledge remains to be established for cannabis. To address this unmet need, we performed in vitro functional and transcriptomic experiments with a human airway epithelial cell line (Calu-3) exposed to cannabis smoke, with tobacco smoke as a positive control. Results: We demonstrate that cannabis smoke induced functional and transcriptional responses that overlapped with tobacco smoke. Ontology and pathway analysis revealed that cannabis smoke induced DNA replication and oxidative stress responses. Functionally, cannabis smoke impaired epithelial cell barrier function, antiviral responses, and increased inflammatory mediator production. Our study reveals striking similarities between cannabis and tobacco smoke exposure on impairing barrier function, suppressing antiviral pathways, potentiating of pro-inflammatory mediators, and inducing oncogenic and oxidative stress gene expression signatures. LABA/GC intervention in airway epithelial cells exposed to cannabis smoke reduces levels of pro-inflammatory (CXCL8) and antiviral (CXCL10) mediators, while transcriptomic signatures of neutrophil mediated immunity and oxidative stress remain elevated. Conclusions: Collectively our data suggest that cannabis smoke exposure is not innocuous and may possess many of the deleterious properties of tobacco smoke, warranting additional studies to support public policy, government regulations, and user practices.
Project description:Cigarette smoking is the major cause of chronic inflammatory diseases such as Chronic Obstructive Pulmonary Disease (COPD). It is paramount to develop pharmacological interventions and delivery strategies against the cigarette smoke (CS) associated oxidative stress in COPD. This study in Wistar rats examined cysteamine in nanoemulsions to counteract the cigarette smoke distressed microenvironment. In vivo, 28 days of cigarette smoke and 15 days of cysteamine nanoemulsions treatment starting on 29th day consisting of oral and inhalation routes were established in Wistar rats. Additionally, we conducted inflammatory and epithelial-to-mesenchymal transition (EMT) studies in vitro in human bronchial epithelial cell lines (BEAS2B) using 5% cigarette smoke extract. Inflammatory and anti-inflammatory markers such as TNF-α, IL-6, IL-1ß, IL-8, IL-10, IL-13, have been quantified in bronchoalveolar lavage fluid (BALF) to evaluate the effects of the cysteamine nanoemulsions in normalizing the diseased condition. Histopathological analysis of the alveoli and the trachea showed the distorted, lung parenchyma and ciliated epithelial barrier, respectively. To obtain mechanistic insights into the cigarette smoke COPD rat model, “shotgun” proteomics of the lung tissues have been carried out using high-resolution mass spectrometry wherein genes such as ABI1, PPP3CA, PSMA2, FBLN5, ACTG1, CSNK2A1, and ECM1 exhibited significant differences across all the groups. Pathway analysis showed autophagy, signaling by receptor tyrosine kinase, cytokine signaling in immune system, extracellular matrix organization, and hemostasis, as the major contributing pathways across all the studied groups. This work offers new preclinical findings on how cysteamine taken orally or inhaled can combat cigarette smoke-induced oxidative stress.
Project description:Background and Aims: The impact of cigarette smoke on inflammatory bowel disease has been established by a large number of epidemiological, clinical, and preclinical studies. Exposure to cigarette smoke is associated with a higher risk of developing Crohn’s disease but is inversely correlated with the development, disease risks, progression, and relapse rate of ulcerative colitis. Few mechanistic studies have investigated the effect of cigarette smoke on intestinal inflammation and microbial composition. Methods: Three groups of mice were exposed to three different concentrations of cigarette smoke for a total of 4 weeks, including 5 days of dextran sulfate sodium treatment to induce colitis and a 7-day recovery period. A comprehensive and integrated comparative analysis of the global colon transcriptome and microbiome, as well as classical endpoints, was performed. Results: Cigarette smoke exposure significantly decreased the severity induced colitis. Colon transcriptome analysis revealed that cigarette smoke downregulated specific pathways in a concentration-dependent manner, affecting both the inflammatory state and composition of the gut microbiome. Metagenomics analysis demonstrated that cigarette smoke can modulate dextran sulfate sodium-induced dysbiosis of specific bacterial genera, contributing to resolve the inflammation or accelerate recovery. Conclusions: Cigarette smoke alters gut microbial composition and reduces inflammatory responses in a concentration-dependent manner. The present study lays the foundation for investigating potential molecular mechanisms responsible for the attenuation of colitis by cigarette smoke.