Project description:Purpose: To study the expression and function of a novel cell cycle regulatory protein, human ecdysoneless (Ecd), during pancreatic cancer (PC) pathogenesis. Experimental Design: Immunohistochemical expression profiling of Ecd was done in non-neoplastic normal pancreatic tissues and pancreatic ductal adenocarcinoma lesions (from tissue microarray and Rapid Autopsy program) as well as precancerous PanIN lesions and metastatic organs. To analyze the biological significance of Ecd in PC progression, Ecd was stably knocked down in PC cell line followed by in vitro and in vivo functional assays. Results: Normal pancreatic ducts show very weak to no Ecd expression compared to significant positive expression in PC tissues (mean±SE composite score: 0.3±0.2 and 3.8±0.2 respectively, p<0.0001) as well as in PanIN precursor lesions with a progressive increase in Ecd expression with increasing dysplasia (PanIN-1 to PanIN-3). Analysis of matched primary tumors and metastases from PC patients revealed that Ecd is highly expressed in both primary pancreatic tumor and in distant metastatic sites. Further, knockdown of Ecd suppressed cell proliferation in vitro and tumorigenicity of PC cells in mice orthotopic tumors. Microarray study revealed that Ecd regulates expression of glucose transporter GLUT4 in PC cells and was subsequently shown to modulate glucose uptake, lactate production and ATP generation by PC cells. Finally, knockdown of Ecd also reduced level of pAkt, key signaling molecule known to regulate aerobic glycolysis in cancer cells. Conclusion: Ecd is a novel tumor promoting factor that is differentially expressed in pancreatic cancer and potentially regulates glucose metabolism within cancer cells. Two-condition experiment, Ecd knockdown vs Scrambled cells. Biological replicates: 3 Ecd knockdownl, 3 Scrambled, independently grown and harvested. One replicate per array
Project description:Purpose: To study the expression and function of a novel cell cycle regulatory protein, human ecdysoneless (Ecd), during pancreatic cancer (PC) pathogenesis. Experimental Design: Immunohistochemical expression profiling of Ecd was done in non-neoplastic normal pancreatic tissues and pancreatic ductal adenocarcinoma lesions (from tissue microarray and Rapid Autopsy program) as well as precancerous PanIN lesions and metastatic organs. To analyze the biological significance of Ecd in PC progression, Ecd was stably knocked down in PC cell line followed by in vitro and in vivo functional assays. Results: Normal pancreatic ducts show very weak to no Ecd expression compared to significant positive expression in PC tissues (mean±SE composite score: 0.3±0.2 and 3.8±0.2 respectively, p<0.0001) as well as in PanIN precursor lesions with a progressive increase in Ecd expression with increasing dysplasia (PanIN-1 to PanIN-3). Analysis of matched primary tumors and metastases from PC patients revealed that Ecd is highly expressed in both primary pancreatic tumor and in distant metastatic sites. Further, knockdown of Ecd suppressed cell proliferation in vitro and tumorigenicity of PC cells in mice orthotopic tumors. Microarray study revealed that Ecd regulates expression of glucose transporter GLUT4 in PC cells and was subsequently shown to modulate glucose uptake, lactate production and ATP generation by PC cells. Finally, knockdown of Ecd also reduced level of pAkt, key signaling molecule known to regulate aerobic glycolysis in cancer cells. Conclusion: Ecd is a novel tumor promoting factor that is differentially expressed in pancreatic cancer and potentially regulates glucose metabolism within cancer cells.
Project description:Stable knock down of NCOA3 in PC cell lines resulted in significant downregulation of the two most differentially expressed MUCs in PC, MUC4 and MUC1. NCOA3 creates pro-inflammatory conditions by up-regulating chemokines like CXCL1, 2, 5 and CCL20 Stable Knock down of NCOA3 in CD18/HPAF cell line. RNA was isolated from control and stably transfected cells. Each group has three biological replicate.
Project description:Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy and understanding disease progression. Redox factor-1 (Ref-1), a redox signaling protein, regulates the DNA binding activity of several transcription factors, including HIF-1. The conversion of HIF-1 from an oxidized to reduced state leads to enhancement of its DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia.Results: We also integrated the scRNA data analysis with the proteomic analysis and found that the differentially expressed genes and pathways identified from the scRNA-seq data are highly consistent to the significant proteins observed in the proteomics data, especially for the upregulated cell cycle and transcription pathways and downregulated metabolic, apoptosis and signaling pathways under hypoxia. Conclusion: The scRNA-seq and proteomics data consistently demonstrated down-regulated central metabolism pathways in APE1/Ref-1 knockdown vs scrambled control under both normoxia and hypoxia conditions. Experimental Methods: scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model. Matched samples were also collected for bulk proteomic analysis of the four conditions. scRNA-seq data was validated using proteomics and qRT-PCR. Ref-1’s role in mitochondrial function was confirmed using mitochondrial function assays and qRT-PCR. Results: We also integrated the scRNA data analysis with the proteomic analysis and found that the differentially expressed genes and pathways identified from the scRNA-seq data are highly consistent to the significant proteins observed in the proteomics data, especially for the upregulated cell cycle and transcription pathways and downregulated metabolic, apoptosis and signaling pathways under hypoxia. Conclusion: The scRNA-seq and proteomics data consistently demonstrated down-regulated central metabolism pathways in APE1/Ref-1 knockdown vs scrambled control under both normoxia and hypoxia conditions.
Project description:A time-course RNA-seq experiment testing the effect of drug treatment using selective CDK9 inhibitor AZD4573. The experiment was done using a pancreatic cancer cell line HPAF-II carrying KRAS G12D mutation.
Project description:SRP136961 - PRJNA448457 - RNA-seq of response to PORCN inhibition, using ETC-159, in vitro of RNF43 mutant pancreatic adenocarcinoma (HPAF-II).
Project description:Timecourse RNA-seq of response to PORCN inhibition, using ETC-159, in an orthotopic model of RNF43 mutant pancreatic adenocarcinoma (HPAF-II).
Project description:The high-risk subgroup of Human papilloma viruses (HPVs), exemplified by HPV16/18, are causally linked to human cancers of the anogenital tract, skin, and upper aerodigestive tract. The high-risk HPV oncoproteins E6 and E7 are expressed from a polycistronic transcript that can potentially give rise to alternatively spliced E6 mRNAs, a process important for E6 and E7 expression and oncogenic transformation. Previously, we identified ECD, the human homologue of the Drosophila ecdysoneless gene, as a novel HPV16 E6-interacting protein using Yeast two-hybrid system. Here, we show that the C-terminal region of ECD selectively binds to high-risk but not to low-risk HPV E6 proteins. We demonstrate that ECD is overexpressed in HPV+ as well as HPV- cervical and head and neck patient tumor samples. Using the TCGA dataset, we show that ECD mRNA overexpression predicts shorter survival in these cancer patients. Recent work from our laboratory showed that ECD associates with several components of RNA biogenesis/splicing machinery and are involved in mRNA export. Here, we show that ECD is an RNA binding protein and regulates mRNA splicing. RNAseq analyses of SiHa cells upon ECD knockdown (KD) revealed alterations of many cellular pathways with prominent downregulation of components of the mRNA splicing machinery. Further investigation revealed that ECD KD resulted in dysregulation of E6 RNA splicing, resulting in decreased E7 and increased RB protein. Furthermore, ECD KD dysregulated several cellular mRNAs known to be critical for HPV oncogenesis. Finally, we demonstrate that while ECD KD in cervical cancer cell lines led to a reduction in oncogenic traits, ECD overexpression together with E7 led to the immortalization of keratinocytes. Taken together, our results support a novel role of ECD in transcription and in viral and cellular mRNA splicing to support HPV-driven oncogenesis.