Project description:Investigation of gene expression level changes in Gordonia sp. KTR9 and Gordonia sp. KTR9 mutant GlnR upon exposure to high and low nitrogen conditions The Gordonia sp. KTR9 strain used in this study has been previously described by Thompson KT, Crocker FH, Fredrickson HL.2005. Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol. 2005 Dec;71(12):8265-72.
Project description:Hydrocarbons are important environmental pollutants, and the isolation and characterization of new microorganisms with the ability to degrade these compounds are important for effective biodegradation. In this work we isolated and characterized several bacterial isolates from compost, a substrate rich in microbial diversity. The isolates were obtained from selective culture medium containing n-hexadecane, aiming to recover alkane-degraders. Six isolates identified as Gordonia by MALDI-TOF and 16S rRNA sequencing had the ability to degrade n-hexadecane in three days. Two isolates were selected for genomic and functional characterization, Gordonia paraffinivorans (MTZ052) and Gordonia sihwensis (MTZ096). The CG-MS results showed distinct n-hexadecane degradation rates for MTZ052 and MTZ096 (86% and 100% respectively). The genome sequence showed that MTZ052 encodes only one alkane degrading gene cluster, the CYP153 system, while MTZ096 harbors both the Alkane Hydroxylase (AH) and the CYP153 systems. qPCR showed that both gene clusters are induced by the presence of n-hexadecane in the growth medium, suggesting that G. paraffinivorans and G. sihwensis use these systems for degradation. Altogether, our results indicate that these Gordonia isolates have a good potential for biotransformation of hydrocarbons.
Project description:Investigation of gene expression level changes in Gordonia sp. KTR9 upon exposure to RDX and Nitrogen Limitation, compared to controls with no RDX. The Gordonia sp. KTR9 strain used in this study has been previously described by Thompson KT, Crocker FH, Fredrickson HL.2005. Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol. 2005 Dec;71(12):8265-72.
Project description:Investigation of gene expression level changes in Gordonia sp. KTR9 and Gordonia sp. KTR9 mutant GlnR upon exposure to high and low nitrogen conditions The Gordonia sp. KTR9 strain used in this study has been previously described by Thompson KT, Crocker FH, Fredrickson HL.2005. Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol. 2005 Dec;71(12):8265-72. A 12 x 135K array study using total RNA recovered from triplicate cultures of KTR9 exposed to high nitrogen conditions, triplicate cultures of KTR9 exposed to low nitrogen conditions, triplicate cultures of KTR9 mutant GlnR exposed to high nitrogen conditions, triplicate cultures of KTR9 mutant GlnR exposed to low nitrogen conditions.