Project description:This study aimed to establish an epithelial-mesenchymal transition (EMT) model with an immortalized human bronchial epithelial cell line, M-BE, and to identify an EMT signature gene set. The TGF-β1-induced M-BE cells got spindle-shaped fibroblast-like morphology and lost the cell-cell contact, with down-regulated expression of epithelial marker E-cadherin and up-regulated expression of mesenchymal markers N-cadherin and Vimentin. Examined by microarray, there were 2628 genes identified as significant EMT-related, including 1490 up-regulated genes (FC > 2, fdr < 0.01) and 1138 down-regulated genes (FC < 0.5, fdr < 0.01) in TGF-β1-induced M-BE cells.
Project description:This study aimed to establish an epithelial-mesenchymal transition (EMT) model with an immortalized human bronchial epithelial cell line, M-BE, and to identify an EMT signature gene set. The TGF-M-NM-21-induced M-BE cells got spindle-shaped fibroblast-like morphology and lost the cell-cell contact, with down-regulated expression of epithelial marker E-cadherin and up-regulated expression of mesenchymal markers N-cadherin and Vimentin. Examined by microarray, there were 2628 genes identified as significant EMT-related, including 1490 up-regulated genes (FC > 2, fdr < 0.01) and 1138 down-regulated genes (FC < 0.5, fdr < 0.01) in TGF-M-NM-21-induced M-BE cells. M-BE cells were treated with human recombinant TGF-M-NM-21 (5ng/ml) for six days. M-BE cells cultured without TGF-M-NM-21 were considered the controls. Three replicates of each were carried out for this investigation. Agilent 4x44K Human Whole Genome expression microarray (G4112F) analysis was applied to the RNA samples of the TGF-M-NM-21-treated M-BE cells and the controls.
Project description:We studied miRNAs and their gene targets affecting SARS-CoV-2 pathogenesis in CF airway epithelial cell models in response to TGF-β1. Small RNAseq in CF human bronchial epithelial cell line treated with TGF-β1 and miRNA profiling characterized TGF-β1 effects on the SARS-CoV-2 pathogenesis pathways. Among the effectors, we identified and validated two miRNAs targeting ACE2 mRNA using different CF and non-CF human bronchial epithelial cell models. We have shown that TGF-β1 inhibits ACE2 expression by miR-136-3p and miR-369-5p. ACE2 levels were higher in cells expressing F508del-CFTR, compared to wild-type(WT)-CFTR and TGF-β1 inhibited ACE2 in both cell types. The ACE2 protein levels were still higher in CF, compared to non-CF cells after TGF-β1 treatment. TGF-β1 prevented the functional rescue of F508del-CFTR by ETI in primary human bronchial epithelial cells while ETI did not prevent the TGF-β1 inhibition of ACE2 protein. Finally, TGF-β1 reduced binding of ACE2 to the recombinant monomeric spike RBD. Our results may help to explain, at least in part, the role of TGF-β1 on the SARS-CoV-2 entry via ACE2 in the CF and non-CF airway.
Project description:Despite being exposed to respiratory syncytial virus (RSV) infection multiple times in our lives, infants, older-adults, and immunocompromised patients are vulnerable to RSV-associated severe diseases, such as bronchiolitis and pneumonia. Respiratory viral infections are known to promote pulmonary fibrosis formation, which are often associated with a cellular remodeling process epithelial-mesenchymal transition (EMT). However, there is no information on whether RSV causes EMT in bronchial epithelial cells. Our results suggest that RSV-infection does not induce EMT in three different in vitro lung models: epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. Interestingly, RSV infection increased cell surface area and perimeter in the infected airway epithelium, which is distinct from the TGF-β1 driven cell elongation. Genome-wide transcriptome analysis also revealed that RSV infection is not involved in cell motility and locomotion. Thus, our results suggest that RSV infection does not induce EMT in the airway epithelium
Project description:The purpose of this study was to increase the current knowledge about the LMTK2 network and its intersection with the TGF-β1 signaling pathway. To understand how the LMTK2 and TGF-β1 pathways interconnect, we knocked down LMTK2 using small(si)RNA-mediated silencing in human bronchial epithelial CFBE41o- cells, treated cells with TGF-β1 or vehicle control, and performed differential gene expression analysis by RNA sequencing (RNAseq).
Project description:To identify the dysregulated lncRNA and mRNA expression in ARPE-19 cells underwent EMT, we established a TGF-β1 induced EMT model of ARPE-19 cells. ARPE-19 cells were treated with or without 10 ng/ml TGF-β1 for 48 h. Total RNA are extracted and subjected to microarray assay (Arraystar Human LncRNA Microarray V3.0)
Project description:Vicious circle of some key proteins is critical in the process of tumor development. Nevertheless, the mechanism of how the epigenetic modifiers are involved in was seldom reported and has not been clearly illustrated. We found the expression of lysine specific demethylase 1 (LSD1), the first identified histone lysine demethylase, is positively correlated with transforming growth factor beta 1 (TGF β1) in gastric cancer tissues and can be promoted by TGF β1 activated (p-EKR)-(NF-κB)-p300 signaling pathway, which resulted in the progression of epithelial-mesenchymal transition (EMT) in human gastric cancer cells. On the other hand, abrogation of LSD1 leads to the down regulation of TGF β1 as well as the EMT. But in benign cells, this circle was blocked by TGF β1 induced inactivation of ERK, which suggested the distinct roles of TGF β1 against LSD1 in gastric cancer cells and benign cells. This vicious cycle may illustrate a novel mechanism for EMT in gastric cancer mediate by TGF β1 and LSD1 but not in benign cells and may serve as a new strategy for the prevention of EMT for gastric cancer.
Project description:PHF8 exerts distinct functions in different types of cancer. However, the mechanisms underlying its specific functions in each case remain obscure. To establish whether overexpression of PHF8 regulates the TGF-β induced the epithelial-mesenchymal transition (EMT), we treated MCF10A-Mock (control) and MCF10A-PHF8wt (overexpressing wild-type PHF8) cells with TGF-β1 for 0, 24, 48 and 72 hours and performed RNA-seq in biological duplicates. Our data indicated that EMT gene signatures were significantly enriched in MCF10A-PHF8 cells with TGF-β1 treatment at all time points, strongly indicating that PHF8 overexpression induces a sustained EMT signaling program.
Project description:Epithelial-mesenchymal transition (EMT) has recently been recognized as a key element of cell invasion, migration, metastasis, and drug resistance in several types of cancer, including non-small cell lung cancer (NSCLC). Our aim was to clarify microRNA (miRNA) -related mechanisms underlying EMT followed by acquired resistance to epidermal growth factor receptor tyrosine-kinase inhibitor (EGFR-TKI) in NSCLC. MiRNA expression profiles were examined before and after transforming growth factor-beta1 (TGF-β1) exposure in four human adenocarcinoma cell lines with or without EMT. Correlation between expressions of EMT-related miRNAs and resistance to EGFR-TKI gefitinib was evaluated. MiRNA array and quantitative RT-PCR revealed that TGF-β1 significantly induced overexpression of miR-134, miR-487b, and miR-655, which belong to the same cluster located on chromosome 14q32, in lung adenocarcinoma cells with EMT. MAGI2 (membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2), a predicted target of these miRNAs and a scaffold protein required for PTEN (phosphatase and tensin homolog), was diminished in A549 cells with EMT after the TGF-β1 stimulation. Overexpression of miR-134 and miR-487b promoted the EMT phenomenon and affected the drug resistance to gefitinib, whereas knockdown of these miRNAs inhibited the EMT process and reversed TGF-β1-induced resistance to gefitinib. Our study demonstrated that the miR-134/487b/655 cluster contributed to the TGF-β1-induced EMT phenomenon and affected the resistance to gefitinib by directly targeting MAGI2, whose suppression subsequently caused loss of PTEN stability in lung cancer cells. The miR-134/miR-487b/miR-655 cluster may be new therapeutic targets in advanced lung adenocarcinoma patients, depending on the EMT phenomenon.
Project description:We have developed cdk4/hTERT-immortalized normal human bronchial epithelial cells (HBECs) to study lung cancer pathogenesis. By studying the oncogenic effect of common lung cancer alterations (p53, KRAS, and c-MYC) we demonstrate the ability of this model to characterize the stepwise transformation of bronchial epithelial cells to full malignancy. Using HBECs derived from multiple individuals we found: 1) the combination of five genetic alterations (p53, KRASV12, c-MYC, CDK4 and hTERT) is sufficient for full tumorigenic conversion of HBECs; 2) high levels of KRASV12 are required for full malignant transformation of HBECs, however these levels also stimulate oncogene-induced senescence; 3) RAS-induced senescence is largely bypassed with loss of p53 function; 4) over-expression of c-MYC greatly enhances malignancy but only in the context of sh-p53+KRASV12; 5) HBECs from different individuals vary in their sensitivity to transformation by these oncogenic manipulations; 6) serum-induced epithelial-to-mesenchymal transition (EMT) increases in vivo tumorigenicity; 7) genetically-identical clones of transformed HBECs exhibit pronounced differences in tumor growth, histology, and differentiation as well as sensitivity to standard platinum-based chemotherapies; and 8) an mRNA signature derived from tumorigenic and non-tumorigenic clones is predictive of outcome in lung cancer patients. Collectively, we demonstrate this HBEC model system can be used to study the effect of oncogenic mutations on malignant progression, oncogene-induced senescence, and EMT along with clinically translatable applications such as development of prognostic signatures and drug response phenotypes. Human bronchial epithelial cells (HBECs) immortalized with cdk4 and hTERT were transformed with p53 knockdown, KrasV12 and cMYC over-expression and profiled on Illumina HumanHT-12 V4.0 expression beadchips. Transformed HBECs were grown in two different growth media: KSFM (defined, serum-free medium) or R10 (RPMI with 10% FBS) as indicated. Clones were isolated from HBECs with sh-p53 + KrasV12 and sh-p53 + KrasV12 + cMYC.