Project description:TLR activation induces inflammatory responses in macrophages by activating temporally defined transcriptional cascades within the first hours after stimulation. Whether concurrent changes in the cellular metabolism that occur upon TLR activation influence the quality of the transcriptional responses remain unknown. Here we investigated how macrophages adopt their metabolism early after activation to regulate TLR-inducible gene induction. Macrophages increase glucose metabolism and adopt fluxes through the TCA cycle to foster Citrate synthesis. We concomitantly observe activation of ATP-Citrate Lyase (Acly), resulting in augmented acetyl-CoA synthesis and histone acetylation. To investigate which genes and genes classes require ATP-citrate lyase activity for induction we stimulated bone marrow derived macrophages with LPS after ATP-citrate lyase inhibition.
Project description:Acetyl-Coenzyme A (acetyl-CoA) is a central metabolite and the acetyl source for protein acetylation, particularly histone acetylation that promotes gene expression. However, the effect of acetyl-CoA levels on histone acetylation status in plants remains unknown. Here, we show that malfunctioned cytosolic acetyl-CoA carboxylase1 (ACC1) in Arabidopsis leads to elevated levels of acetyl-CoA and promotes histone hyperacetylation predominantly at lysine 27 of histone H3 (H3K27). The increase of H3K27 acetylation (H3K27ac) is dependent on ATP-citrate lyase which cleaves citrate to acetyl-CoA in the cytoplasm, and requires histone acetyltransferase GCN5. A comprehensive analysis of the transcriptome and metabolome in combination with the genome-wide H3K27ac profiles of acc1 mutants, demonstrate the dynamic changes of H3K27ac, gene transcripts and metabolites occurring in the cell by the increased levels of acetyl-CoA. This study suggests that H3K27ac is an important link between cytosolic acetyl-CoA level and gene expression in response to the dynamic metabolic environments in plants.
Project description:The interaction of Cryptococcus neoformans with phagocytic cells of the innate immune system is a key step in disseminated disease leading to meningoencephalitis in immunocompromised individuals. Transcriptional profiling of cryptococcal cells harvested from cell culture medium or from macrophages found differential expression of metabolic and other functions during fungal adaptation to the intracellular environment by SAGE analysis. We focused on the ACL1 gene for ATP-citrate lyase, which converts citrate to acetyl-CoA, because this gene showed elevated transcript levels in macrophages and because of the importance of acetyl-CoA as a central metabolite. Mutants lacking ACL1 showed delayed growth on medium containing glucose, reduced cellular levels of acetyl-CoA, defective production of virulence factors, increased susceptibility to the antifungal drug fluconazole and decreased survival within macrophages. Importantly, acl1 mutants were unabl e to cause disease in a murine inhalation model, a phenotype that was more extreme than other mutants with defects in acetyl-CoA production (e.g., an acetyl-CoA synthetase mutant). Loss of virulence is likely due to perturbation of critical physiological interconnections between virulence factor expression and metabolism in C. neoformans. Phylogenetic analysis and structural modeling of cryptococcal Acl1 identified three indels unique to fungal protein sequences; these differences may provide opportunities for the development of pathogen-specific inhibitors. SAGE analysis of C. neoformans cells isolated from macrophages The murine macrophage-like cell line J774A.1 was maintained at 37°C in 10% CO2 in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% heat-inactivated fetal calf serum (FBS), 1% nonessential amino acids, 100 µg mL-1 penicillin-streptomycin, and 4 mM L-glutamine (Invitrogen). Cryptococcus cells were opsonized with monoclonal antibody 18B7 against capsule (1 µg mL-1), and macrophages were treated with recombinant mouse gamma interferon (IFN-gamma) (50 U mL-1) and lipopolysaccharide (LPS) (0.3 µg mL-1) prior to co-incubation at a multiplicity of infection (MOI) of 1:1. Macrophages were inoculated with H99 cells and washed after 1 h of inoculation to remove unattached, extracellular fungal cells. After 6 h of incubation, sterile, ice-cold distilled H2O was applied to each well to lyse the macrophages, and the fungal cells (4 x 107) were harvested by centrifugation. H99 control cells were prepared by growth under the same condition but without macrophages, and 108 cell s were harvested.
Project description:Coordination of cellular metabolism is essential for optimal T cell responses. Here, we identify cytosolic acetyl-CoA production as an essential metabolic node for CD8 T cell function in vivo. We show that CD8 T cell responses to infection depend on acetyl-CoA derived from citrate via the enzyme ATP citrate lyase (ACLY). However, ablation of ACLY triggers an alternative, acetate-dependent pathway for acetyl-CoA production mediated by acyl-CoA synthetase short chain family member 2 (ACSS2). Mechanistically, acetate fuels both the TCA cycle and cytosolic acetyl-CoA production, impacting T cell effector responses, acetate-dependent histone acetylation, and chromatin accessibility at effector gene loci. When ACLY is functional, ACSS2 is not required, suggesting acetate is not an obligate metabolic substrate for CD8 T cell function. However, loss of ACLY renders CD8 T cells dependent on acetate (via ACSS2) to maintain acetyl-CoA production and effector function. Together, ACLY and ACSS2 coordinate cytosolic acetyl-CoA production in CD8 T cells to maintain chromatin accessibility and T cell effector function.
Project description:Coordination of cellular metabolism is essential for optimal T cell responses. Here, we identify cytosolic acetyl-CoA production as an essential metabolic node for CD8 T cell function in vivo. We show that CD8 T cell responses to infection depend on acetyl-CoA derived from citrate via the enzyme Acly (ATP citrate lyase). However, ablation of Acly triggers an alternative, acetate-dependent pathway for acetyl-CoA production mediated by Acss2 (acyl-CoA synthetase short chain family member 2). Mechanistically, acetate fuels both the TCA cycle and cytosolic acetyl-CoA production, impacting T cell effector responses, acetate-dependent histone acetylation, and chromatin accessibility at effector gene loci. When Acly is functional, Acss2 is not required, suggesting acetate is not an obligate metabolic substrate for CD8 T cell function. However, deletion of Acly renders CD8 T cells dependent on acetate (via Acss2) to maintain acetyl-CoA production and effector function. Thus, together Acly and Acss2 coordinate cytosolic acetyl-CoA production in CD8 T cells to maintain chromatin accessibility and T cell effector function.
Project description:Coordination of cellular metabolism is essential for optimal T cell responses. Here, we identify cytosolic acetyl-CoA production as an essential metabolic node for CD8 T cell function in vivo. We show that acetyl-CoA derived from mitochondrial citrate via the enzyme ATP citrate lyase (Acly) is required for CD8 T cell responses to infection. However, ablation of Acly triggers an alternative, acetate-dependent pathway for acetyl-CoA production in T cells mediated by acyl-CoA synthetase short chain family member 2 (Acss2). Mechanistically, acetate fuels both the TCA cycle and cytosolic acetyl-CoA production, impacting T cell effector responses, acetate-dependent histone acetylation, and effector gene expression by altering chromatin accessibility. When Acly is functional, Acss2 is not required, suggesting acetate is not an obligate metabolic substrate for CD8 T cell function. However, deletion of Acly renders CD8 T cells dependent on acetate (via Acss2) to maintain acetyl-CoA production and effector function. Thus, together Acly and Acss2 coordinate cytosolic acetyl-CoA production in CD8 T cells to maintain chromatin accessibility and T cell effector function.
Project description:Metabolic production of acetyl-CoA has been linked to histone acetylation and gene regulation, however the mechanisms are largely unknown. We show that the metabolic enzyme acetyl-CoA synthetase 2 (ACSS2) is a critical and direct regulator of histone acetylation in neurons and of long-term mammalian memory. We observe increased nuclear ACSS2 in differentiating neurons in vitro. Genome-wide, ACSS2 binding corresponds with increased histone acetylation and gene expression of key neuronal genes. These data indicate that ACSS2 functions as a chromatin-bound co-activator to increase local concentrations of acetyl-CoA and to locally promote histone acetylation for transcription of neuron-specific genes. Remarkably, in vivo attenuation of hippocampal ACSS2 expression in adult mice impairs long-term spatial memory, a cognitive process reliant on histone acetylation. ACSS2 reduction in hippocampus also leads to a defect in upregulation of key neuronal genes involved in memory. These results reveal a unique connection between cellular metabolism and neural plasticity, and establish a link between generation of acetyl-CoA and neuronal chromatin regulation. Global survey of gene expression in CAD cells and differentiated CAD neurons following lentiviral knockdown of ACSS2 or ATP citrate lyase (ACL) (and control = scramble hairpin); survey of hippocampal gene expression changes associated with retrieval of fear memory, after ACSS2-AAV knockdown or in EGFP-AAV control (comparison of 0h vs. 1h post-memory retrieval).
Project description:Increased fatty acid synthesis benefits glioblastoma malignancy. However, the coordinated regulation of cytosolic acetyl-CoA production, the exclusive substrate for fatty acid synthesis, remains unclear. Here, we show that proto-oncogene tyrosine kinase c-SRC is activated in glioblastoma and remodels cytosolic acetyl-CoA production for fatty acid synthesis. Firstly, acetate is an important substrate for fatty acid synthesis in glioblastoma. c-SRC phosphorylates acetyl-CoA synthetase ACSS2 at Tyr530 and Tyr562 to stimulate the conversion of acetate to acetyl-CoA in cytosol. Secondly, c-SRC inhibits citrate-derived acetyl-CoA synthesis by phosphorylating ATP-citrate lyase ACLY at Tyr682. ACLY phosphorylation shunts citrate to IDH1-catalyzed NADPH production to provide reducing equivalent for fatty acid synthesis. The c-SRC-unresponsive double-mutation of ACSS2 and ACLY significantly reduces fatty acid synthesis and hampers glioblastoma progression. In conclusion, this remodeling fulfills the dual needs of glioblastoma cells for both acetyl-CoA and NADPH in fatty acid synthesis and provides evidence for glioma treatment by c-SRC inhibition.
Project description:Acetyl-CoA is a key metabolite in all organisms, implicated in transcriptional regulation, post-translational modification as well as fuelling the TCA cycle and the synthesis and elongation of fatty acids. The obligate intracellular parasite Toxoplasma gondii possesses two enzymes which produce acetyl-CoA in the cytosol and nucleus: the acetyl-CoA synthase (ACS) and the ATP-citrate lyase (ACL), while the branched chain α-ketoacid dehydrogenase (BCKDH) generates acetyl-CoA in the mitochondrion. Given the diverse functions of acetyl-CoA, we know little about the specific roles of distinct sub-cellular acetyl-CoA pools and how these impact overall parasite physiology. To assess the broad functions of nucleo-cytosolic as well as mitochondrial acetyl-CoA, we analysed the acetylome and total proteome of parasites lacking ACL/ACS or BCKDH.
Project description:Ne-lysine acetylation within the lumen of the endoplasmic reticulum (ER) is a recently characterized protein quality control system that positively selects properly folded glycoproteins in the early secretory pathway. Overexpression of the ER acetyl-CoA transporter AT-1 in mouse forebrain neurons results in increased dendritic branching, spine formation, and an autistic-like phenotype that is attributed to altered glycoprotein flux through the secretory pathway. AT-1 overexpressing neurons maintain the cytosolic pool of acetyl-CoA by upregulation of SLC25A1, the mitochondrial citrate/malate antiporter, and ATP citrate lyase (ACLY), which converts cytosolic citrate into acetyl-CoA. All three genes have been associated with autism spectrum disorder (ASD), suggesting that aberrant cytosolic to ER flux of acetyl-CoA can be a mechanistic driver for the development of ASD. We therefore generated a SLC25A1 neuron transgenic (nTg) mouse, which displayed autistic-like behaviors with a jumping stereotypy. The mice exhibited increased steady-state levels of citrate and acetyl-CoA, disrupted white matter integrity with activated microglia, and altered synaptic plasticity and morphology. Finally, acetylomic and proteomic analysis revealed differential adaptations in the hippocampus and cortex. Overall, our study reinforces the connection between aberrant cytosol-to-ER flux of acetyl-CoA flux and the development of an autistic-like phenotype.