Project description:The traditional view of hematopoiesis has been that all the cells of the peripheral blood are the progeny of a unitary homogeneous pool of hematopoietic stem cells (HSCs). Recent evidence suggests that the hematopoietic system is actually maintained by a consortium of HSC subtypes with distinct functional characteristics. We show here that myeloid-biased HSCs (My-HSCs) and lymphoid-biased (Ly-HSCs) can be purified according to their capacity for Hoechst dye efflux in combination with canonical HSC markers. We used microarray expression profiling to determine the transcriptional profiles of myeloid-biased lower-SP HSCs and lymphoid-biased upper-SP HSCs Three biological replicates were analyzed for each HSC subpopulation. Lower-SP and upper-SP HSCs were purified from three pools of mice on separate days. HSCs were further purified with the addition of canonical HSC makers; Sca-1+ c-Kit+ Lineage-
Project description:The traditional view of hematopoiesis has been that all the cells of the peripheral blood are the progeny of a unitary homogeneous pool of hematopoietic stem cells (HSCs). Recent evidence suggests that the hematopoietic system is actually maintained by a consortium of HSC subtypes with distinct functional characteristics. We show here that myeloid-biased HSCs (My-HSCs) and lymphoid-biased (Ly-HSCs) can be purified according to their capacity for Hoechst dye efflux in combination with canonical HSC markers. We used microarray expression profiling to determine the transcriptional profiles of myeloid-biased lower-SP HSCs and lymphoid-biased upper-SP HSCs
Project description:MTD project_description Inflammation and decreased stem cell function characterize organism aging, yet the relationship between these factors remains incompletely understood. This study shows that aged hematopoietic stem and progenitor cells exhibit increased ground-stage NF-κB activity, which enhances their responsiveness to undergo differentiation and loss of self-renewal in response to inflammation. The study identifies Rad21/cohesin as a critical mediator of NF-κB signals, by increasing chromatin accessibility of inter-/intra-genic and enhancer regions. Rad21/NF-κB are required for normal differentiation, but limit self-renewal of hematopoietic stem cells (HSCs) during aging and inflammation in an NF-κB dependent manner. HSCs from aged mice fail to downregulate Rad21/cohesin and inflammation/differentiation inducing signals in the resolution phase after acute inflammation. and The inhibition of cohesin/NF-κB is sufficient to revert the hypersensitivity of aged HSPCs to inflammation-induced differentiation. During aging, myeloid-biased HSCs with disrupted and naturally occurring reduced expression of Rad21/cohesin are increasingly selected over lymphoid-biased HSCs. Together, Rad21/cohesin mediated NF-κB signaling limits HSPC function during aging and selects for cohesin deficient HSCs with myeloid skewed differentiation.
Project description:Collombet2016 - Lymphoid and myeloid cell
specification and transdifferentiation
This model is described in the article:
Logical modeling of lymphoid
and myeloid cell specification and transdifferentiation
Samuel Collombet, Chris van Oevelen,
Jose Luis Sardina Ortega, Wassim Abou-Jaoudé, Bruno Di
Stefano, Morgane Thomas-Chollier, Thomas Graf, and Denis
Thieffry
Proceedings of the National Academy of
Sciences of the United States of America
Abstract:
Blood cells are derived from a common set of hematopoietic
stem cells, which differentiate into more specific progenitors
of the myeloid and lymphoid lineages, ultimately leading to
differentiated cells. This developmental process is controlled
by a complex regulatory network involving cytokines and their
receptors, transcription factors, and chromatin remodelers.
Using public data and data from our own molecular genetic
experiments (quantitative PCR, Western blot, EMSA) or
genome-wide assays (RNA-sequencing, ChIP-sequencing), we have
assembled a comprehensive regulatory network encompassing the
main transcription factors and signaling components involved in
myeloid and lymphoid development. Focusing on B-cell and
macrophage development, we defined a qualitative dynamical
model recapitulating cytokine-induced differentiation of common
progenitors, the effect of various reported gene knockdowns,
and the reprogramming of pre-B cells into macrophages induced
by the ectopic expression of specific transcription factors.
The resulting network model can be used as a template for the
integration of new hematopoietic differentiation and
transdifferentiation data to foster our understanding of
lymphoid/myeloid cell-fate decisions.
This model is hosted on
BioModels Database
and identified by:
MODEL1610240000.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Aged hematopoietic stem cells (HSCs) display myeloid-biased differentiation and reduced regenerative potential. In this study, we uncover that P-selectin (Selp) marks a subset of aged HSCs with reduced repopulation capacity. This population of HSCs expresses a prominent aging transcriptome. Overexpression of Selp in young HSCs impaired long-term reconstitution potential and repressed erythropoiesis. We show that IL-1β is elevated in aged bone marrow and administration of IL-1β induces expression of Selp and other aging-associated genes in HSCs. Finally, we demonstrate that transplantation of aged HSCs into young recipients restores a young-like transcriptome, specifically by repressing pro-inflammatory pathways, highlighting the important role of the bone marrow microenvironment in HSC aging.
Project description:A transcriptome study in mouse hematopoietic stem cells was performed using a sensitive SAGE method, in an attempt to detect medium and low abundant transcripts expressed in these cells. Among a total of 31,380 unique transcript, 17,326 (55%) known genes were detected, 14,054 (45%) low-copy transcripts that have no matches to currently known genes. 3,899 (23%) were alternatively spliced transcripts of the known genes and 3,754 (22%) represent anti-sense transcripts from known genes.
Project description:We performed integrated analyses of hematopoietic stem and progenitor cells as well as bone marrow stromal cells to better understand the underlying mechanisms of blood aging. To determine how the molecular state of multipotent progenitor (MPP) cells change with age we performed transcriptomic analyses of myeloid-biased MPP3 and lymphoid-biased MPP4 populations from young and old mice.
Project description:Loss of immune function and an increased incidence of myeloid leukemia are two of the most clinically significant consequences of aging of the hematopoietic system. To better understand the mechanisms underlying hematopoietic aging, we evaluated the cell intrinsic functional and molecular properties of highly purified long-term hematopoietic stem cells (LT-HSCs) from young and old mice. We found that LT-HSC aging was accompanied by cell autonomous changes, including increased stem cell self-renewal, differential capacity to generate committed myeloid and lymphoid progenitors, and diminished lymphoid potential. Expression profiling revealed that LT-HSC aging was accompanied by the systemic down-regulation of genes mediating lymphoid specification and function and up-regulation of genes involved in specifying myeloid fate and function. Moreover, LT-HSCs from old mice expressed elevated levels of many genes involved in leukemic transformation. These data support a model in which age-dependent alterations in gene expression at the stem cell level presage downstream developmental potential and thereby contribute to age-dependent immune decline, and perhaps also to the increased incidence of leukemia in the elderly.
Project description:A transcriptome study in mouse hematopoietic stem cells was performed using a sensitive SAGE method, in an attempt to detect medium and low abundant transcripts expressed in these cells. Among a total of 31,380 unique transcript, 17,326 (55%) known genes were detected, 14,054 (45%) low-copy transcripts that have no matches to currently known genes. 3,899 (23%) were alternatively spliced transcripts of the known genes and 3,754 (22%) represent anti-sense transcripts from known genes. Mouse hematopoietic stem cells were purified from bone marrow cells using negative and positive selection with a Magnetic-Activated Cell Sorter (MACS). total RNA and mRNA were purified from the purified cells using Trizol reagent and magnetic oligo dT beads. Double strand cDNAs were synthesized using a cDNA synthesis kit and anchored oligo dT primers. After NlaIII digestion, 3’ cDNAs were isolated and amplified through 16-cycle PCR. SAGE tags were released from the 3’ cDNA after linker ligation. Ditags were formed, concatemerized and cloned into a pZERO vector. Sequencing reactions were performed with the ET sequencing terminator kit. Sequences were collected using a Megabase 1000 sequencer. SAGE tag sequences were extracted using SAGE 2000 software.
Project description:Haematopoietic stem cells (HSC) and multipotent progenitor cells (MPP) generate all cells of the blood system, although cellular heterogeneity and bias in lineage potential have been observed. Here, we examined whether lineage-specific transcription factors, such as the B-lineage determinant EBF1, establish lineage bias in early progenitors. We detect low level EBF1 expression in myeloid-biased MPP3 and lymphoid-biased MPP4 cells, and show that Ebf1-deficient animals display reduced HSC quiescence and repopulation capacity, enhanced myelopoiesis and enhanced myeloid differentiation potential of MPP3 and MPP4 cells. Bulk and single-cell RNA-seq analysis revealed a CEBPa-driven myeloid transcriptome in Ebf1-deficient progenitors, and we find that EBF1 binds and potentially antagonizes the haematopoietic Cebpa enhancer. In MPP3 cells, EBF1 additionally primes enhancers associated with B-lymphoid genes that gain expression in common lymphoid progenitors. Thus, our study identifies EBF1 as an important determinant in regulating the balance of myeloid versus lymphoid potential in the earliest hematopoietic progenitors.