Project description:At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrate that epithelial intrinsic production of IL-23 triggers an inflammatory loop in the prevalent oral disease, periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome, is evident both in experimental models and in patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome, trigger epithelial IL-23 induction in a TLR5-dependent manner. Intriguingly, unlike other Th17-driven diseases, here non-hematopoietic cell-derived IL-23 serves as an initiator of pathogenic inflammation. Beyond periodontitis, analysis of publicly available datasets reveals expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an unappreciated role for the barrier epithelium in the induction of IL-23-mediated inflammation.
Project description:The composition of the salivary microbiota has been reported to differentiate between patients with periodontitis, dental caries and orally healthy individuals. Thus, the purpose of the present investigation was to compare metaproteomic profiles of saliva in oral health and disease. Stimulated saliva samples were collected from 10 patients with periodontitis, 10 patients with dental caries and 10 orally healthy individuals. Samples were analyzed by means of shotgun proteomics. 4161 different proteins were recorded out of which 1946 and 2090 were of bacterial and human origin respectively. The human proteomic profile displayed significant overexpression of the complement system and inflammatory mediators in periodontitis and dental caries. Bacterial proteomic profiles and functional annotation were very similar in health and disease. Data revealed multiple potential salivary proteomic biomarkers of oral disease. In addition, comparable bacterial functional profiles were observed in periodontitis, dental caries and oral health, which suggest that the salivary microbiota predominantly thrives in a planktonic state expressing no characteristic disease-associated metabolic activity. Future large-scale longitudinal studies are warranted to reveal the full potential of proteomic analysis of saliva as a biomarker of oral health and disease.
Project description:The goal of this study is to use a rapid method for oral neutrophil isolation and use a transcriptomics approach to characterize and compare the neutrophil gene expression profile in the blood and oral compartment of healthy individuals, chronic periodontitis patients and refractory periodontitis patients. Total RNA obtained from isolated neutrophils from blood and oral samples of Healthy patients, chronic periodontits patients and refractory periodontitis patients
Project description:The composition of the salivary microbiota has been reported to differentiate between patients with periodontitis, dental caries and orally healthy individuals. Thus, the purpose of the present investigation was to compare metaproteomic profiles of saliva in oral health and disease. Stimulated saliva samples were collected from 10 patients with periodontitis, 10 patients with dental caries and 10 orally healthy individuals. Samples were analyzed by means of shotgun proteomics. 4161 different proteins were recorded out of which 1946 and 2090 were of bacterial and human origin respectively. The human proteomic profile displayed significant overexpression of the complement system and inflammatory mediators in periodontitis and dental caries. Bacterial proteomic profiles and functional annotation were very similar in health and disease. Data revealed multiple potential salivary proteomic biomarkers of oral disease. In addition, comparable bacterial functional profiles were observed in periodontitis, dental caries and oral health, which suggest that the salivary microbiota predominantly thrives in a planktonic state expressing no characteristic disease-associated metabolic activity. Future large-scale longitudinal studies are warranted to reveal the full potential of proteomic analysis of saliva as a biomarker of oral health and disease.
Project description:Tumors frequently found in dogs include canine oral tumors, either cancerous or noncancerous. The bloodstream is an important route for tumor metastasis, particularly for late-stage oral melanoma (LOM) and late-stage oral squamous cell carcinoma (LOSCC). The present study aimed to investigate serum peptidome-based biomarkers of dogs with early-stage oral melanoma, LOM, LOSCC, benign oral tumors, chronic periodontitis and healthy controls, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography tandem mass spectrometry.