Project description:Alphaviruses establish a persistent infection in arthropod vectors, which is essential for effective transmission of the virus to vertebrate hosts. The development of persistence in insects is not well understood, although it is thought to involve the innate immune response. Using a transgenic fly system (SINrep) expressing a self-replicating viral genome, we have previously demonstrated the antiviral response of the Drosophila Imd (Immune Deficiency) and Jak-STAT innate immunity pathways. In the current study, microarray analysis of SINrep flies in comparison to control GFP flies aims to detect genes that are sensitive to Sindbis viral RNA replication. Both SINrep and GFP adult flies were harvested 3 days post eclosion for RNA extraction and hybridization on Affymetrix microarrays. We look for genes significantly altered in the presence of viral RNA replication.
Project description:Alphaviruses establish a persistent infection in arthropod vectors, which is essential for effective transmission of the virus to vertebrate hosts. The development of persistence in insects is not well understood, although it is thought to involve the innate immune response. Using a transgenic fly system (SINrep) expressing a self-replicating viral genome, we have previously demonstrated the antiviral response of the Drosophila Imd (Immune Deficiency) and Jak-STAT innate immunity pathways. In the current study, microarray analysis of SINrep flies in comparison to control GFP flies aims to detect genes that are sensitive to Sindbis viral RNA replication.
Project description:A spectral library was built for Drosophila melanogaster. The spectral library allows reproducible quantification for thousands of peptides per SWATH-MS analysis.
Proteins from Drosophila melanogaster embryo, adult flies were digested with trypsin using in-gel digestion and the peptides were fractionated by high-pH reverse phase chromatography. HRM peptides were spiked into the peptides mixture and each fraction was injected on a Sciex TripleTOF 6600 mass spectrometer fitted with microflow set-up.
The resulting .wiff files were analysed using MaxQuant and Spectronaut.
Project description:Proteomic Analysis (MS/MS) of Drosophila melanogaster mtx2 (Ortholog of CG8004) Heterozygous versus Homozygous Mutants at 2 Days Post-Pupa Formation
Project description:<p>Viral studies of Drosophila melanogaster typically involve virus injection with a small needle, causing post-injury a wounding/wound healing response, in addition to the effects of viral infection. However, the metabolic response to the needle injury is understudied, and many viral investigations neglect potential effects of this response. Furthermore, the wMel strain of the endosymbiont bacterium Wolbachia pipientis provides anti-viral protection in Drosophila. Here we used NMR-based metabolomics to characterise the acute wounding response in Drosophila and the relationship between wound healing and the Wolbachia strain wMel. The most notable response to wounding was found on the initial day of injury and lessened with time in both uninfected and Wolbachia infected flies. Metabolic changes in injured flies revealed evidence of inflammation, Warburg-like metabolism and the melanisation immune response as a response to wounding. In addition, at five days post injury Wolbachia infected injured flies were metabolically more similar to the uninjured flies than uninfected injured flies were at the same time point, indicating a positive interaction between Wolbachia infection and wound healing. This study is the first metabolomic characterisation of the wound response in Drosophila and its findings are crucial to the metabolic interpretation of viral experiments in Drosophila in both past and future studies.</p>