Project description:Study Smoking and COPD are associated with decreased mucociliary clearance and healthy smokers have shorter cilia in the large airway than nonsmokers. Intraflagellar transport (IFT) is the process by which cilia are produced and maintained. We assessed expression of IFT-related genes in smokers and nonsmokers and evaluated cilia length in the large and small airway of nonsmokers, healthy smokers, and smokers with COPD. Methods Airway epithelium was obtained via bronchoscopic brushing. Affymetrix microarrays were used to evaluate IFT gene expression in 2 independent data sets from large and small airway. Cilia length was assessed by measuring 100 cilia (10 cilia on each of 10 cells) per subject. Results All 40 IFT genes were expressed in the human large and small airway epithelium. In the large airway, 10 IFT genes were down-regulated and 1 up-regulated in smokers. In the small airway, 11 genes were down-regulated and 3 up-regulated in smokers. A set of 8 IFT genes was down-regulated in both data sets. In the large and small airway epithelium, cilia were significantly shorter in healthy smokers than nonsmokers, and significantly shorter in COPD smokers than in both healthy smokers and nonsmokers. Answer to the Question These results support the concept that loss of cilia length contributes to defective mucociliary clearance in COPD, and that smoking-induced changes in expression of IFT genes may be one mechanism of abnormally short cilia in smokers. Strategies to normalize cilia length may be an important avenue for novel COPD therapies. Gene expression was assessed for 40 intraflagellar transport related genes in the LAE of nonsmokers (n=21) and healthy smokers (n=31) and the SAE of an independent group of nonsmokers (n=28) and healthy smokers (n=69). Cilia length was assessed in a total of 228 airway epithelium samples, including 120 LAE samples and 108 SAE samples; a subset of the 228 samples is represented among the 149 samples in this Series.
Project description:Study Smoking and COPD are associated with decreased mucociliary clearance and healthy smokers have shorter cilia in the large airway than nonsmokers. Intraflagellar transport (IFT) is the process by which cilia are produced and maintained. We assessed expression of IFT-related genes in smokers and nonsmokers and evaluated cilia length in the large and small airway of nonsmokers, healthy smokers, and smokers with COPD. Methods Airway epithelium was obtained via bronchoscopic brushing. Affymetrix microarrays were used to evaluate IFT gene expression in 2 independent data sets from large and small airway. Cilia length was assessed by measuring 100 cilia (10 cilia on each of 10 cells) per subject. Results All 40 IFT genes were expressed in the human large and small airway epithelium. In the large airway, 10 IFT genes were down-regulated and 1 up-regulated in smokers. In the small airway, 11 genes were down-regulated and 3 up-regulated in smokers. A set of 8 IFT genes was down-regulated in both data sets. In the large and small airway epithelium, cilia were significantly shorter in healthy smokers than nonsmokers, and significantly shorter in COPD smokers than in both healthy smokers and nonsmokers. Answer to the Question These results support the concept that loss of cilia length contributes to defective mucociliary clearance in COPD, and that smoking-induced changes in expression of IFT genes may be one mechanism of abnormally short cilia in smokers. Strategies to normalize cilia length may be an important avenue for novel COPD therapies.
Project description:Differential profiles from whole genome human expression arrays on monocytes obtained from peripheral blood in COPD was studied and compared with controls. Monocytes were isolated from Controls (Group 1) which included Control Smokers (Group 1A) and Control Never Smokers (Group 1B) and COPD (Group 2) which included COPD Smokers (Group 2A) and COPD ExSmokers (Group 2B). Differential transcriptomic expression associated with (i) Smoking, (ii) COPD, and (iii) cessation of smoking were identified.
Project description:In this study, we found that ablation of genes encoding ciliary transport proteins such as intraflagellar transport homolog 88 (Ift88) and kinesin family member 3a (Kif3a) in cortical radial progenitors led to periventricular heterotopia during late mouse embryogenesis. Conditional mutation of primary cilia unexpectedly caused breakdown of both the neuroepithelial lining and the blood-choroid plexus barrier. Choroidal leakage was partially caused by enlargement of the choroid plexus in the cilia mutants. We found that the choroid plexus expressed platelet-derived growth factor A (Pdgf-A) and that Pdgf-A expression was ectopically increased in cilia-mutant embryos. Cortices obtained from embryos in utero electroporated with Pdgfa mimicked periventricular heterotopic nodules of the cilia mutant.
Project description:The apical junctional complex (AJC), composed of tight junctions and adherens junctions, is essential for maintaining epithelial barrier function. Since cigarette smoking and chronic obstructive pulmonary disease (COPD), the major smoking-induced disease, are both associated with increased lung epithelial permeability, we hypothesized that smoking alters the transcriptional program regulating AJC integrity in the small airway epithelium (SAE), the primary site of pathological changes in COPD. Transcriptome analysis revealed a global down-regulation of physiological AJC gene expression in the SAE of healthy smokers (n=53) compared to healthy nonsmokers (n=59), an observation associated with changes in molecular pathways regulating epithelial differentiation such as PTEN signaling and accompanied by induction of cancer-related AJC genes. Genome-wide co-expression analysis identified a smoking-sensitive AJC transcriptional network. The overall expression of AJC-associated genes was further decreased in COPD smokers (n=23). Exposure of human airway epithelial cells to cigarette smoke extract in vitro resulted in down-regulation of several AJC-related genes, accompanied by decreased transepithelial resistance. Thus, cigarette smoking alters the AJC gene expression architecture in the human airway epithelium, providing a molecular basis for the dysregulation of airway epithelial barrier function during the development of smoking-induced lung disease. The apical junctional complex (AJC), composed of tight junctions and adherens junctions, is essential for maintaining epithelial barrier function. Since cigarette smoking and chronic obstructive pulmonary disease (COPD), the major smoking-induced disease, are both associated with increased lung epithelial permeability, we hypothesized that smoking alters the transcriptional program regulating AJC integrity in the small airway epithelium (SAE), the primary site of pathological changes in COPD. In this study, microarray analysis of the SAE obtained from 53 healthy nonsmokers, 59 healthy smokers, and 23 smokers with COPD was performed to determine physiological AJC gene expression architecture in the SAE and its modification by cigarette smoking and during the development of COPD.
Project description:Ciliopathies, caused by defective cilia biogenesis or function, comprise a genetically and clinically diverse group of diseases. Primary cilia play pivotal roles in the regulation of a multitude of signalling pathways during development and tissue homeostasis. Cilia assembly, maintenance and signalling depend on the intraflagellar transport (IFT). Tubby-like protein 3 (TULP3) functions as an adapter protein for the ciliary trafficking of diverse membrane cargos via an interaction with the IFT-A complex. Recently, we and others have shown that individuals carrying pathogenic TULP3 variants suffer from progressive liver, kidney and heart disease. In line with these findings, adult Tulp3 knockout zebrafish displayed liver fibrosis and kidney cyst phenotypes. In the present study, we analysed the functional consequences of Tulp3 deficiency during zebrafish embryogenesis. Tulp3 deficiency resulted in well-known ciliopathy-associated phenotypes including pronephric cysts, otolith deposition defects, body curvature and altered left-right asymmetry. Our analysis of urotensin 2-related peptide (Urp) signaling, which is required for proper spine morphogenesis, revealed reduced expression of urp1 in Tulp3 knockout embryos. We also observed severe scoliosis in a significant number of adult Tulp3 knockout zebrafish. Analysis of ciliogenesis revealed a reduced cilia number and ciliary length in Tulp3 deficient embryos. In addition, Tulp3 deficiency resulted in upregulation of cilia-dependent profibrotic Wnt and Jak/Stat signalling components. Furthermore, we demonstrate that loss of Tulp3 causes upregulation of genes related to liver fibrosis. In conclusion, our data highlights a critical role of Tulp3 in proper cilia formation and function to maintain healthy tissue architecture during zebrafish embryogenesis, and provides further insight into the spectrum of cilia-related phenotypes in adult zebrafish depleted for Tulp3 functions.
Project description:The first changes associated with smoking are in the small airway epithelium (SAE). Given that smoking alters SAE gene expression, but only a fraction of smokers develop chronic obstructive pulmonary disease (COPD), we hypothesized that assessment of SAE genome-wide gene expression would permit biologic phenotyping of the smoking response, and that a subset of healthy smokers would have a “COPD-like” SAE transcriptome. SAE (10th-12th generation) was obtained via bronchoscopy of healthy nonsmokers, healthy smokers and COPD smokers and microarray analysis was used to identify differentially expressed genes. Individual responsiveness to smoking was quantified with an index representing the % of smoking-responsive genes abnormally expressed (ISAE), with healthy smokers grouped into “high” and “low” responders based on the proportion of smoking-responsive genes up- or down-regulated in each smoker. Smokers demonstrated significant variability in SAE transcriptome with ISAE ranging from 2.9 to 51.5%. While the SAE transcriptome of “low” responder healthy smokers differed from both “high” responders and smokers with COPD, the transcriptome of the “high” responder healthy smokers was indistinguishable from COPD smokers. The SAE transcriptome can be used to classify clinically healthy smokers into subgroups with lesser and greater responses to cigarette smoking, even though these subgroups are indistinguishable by clinical criteria. This identifies a group of smokers with a “COPD-like” SAE transcriptome.
Project description:b'To discover distinctive endogenous metabotype of patients with COPD associated with TB from those originated from Tabaco smoking. Cross-sectional metabolomic analyses of serum samples were performed for subjects including TB-associated COPD (T-COPD), smoking-associated COPD (S-COPD) and healthy subjects. To retain a broad spectrum of metabolites, technically distinct analyses (global metabolomic profiling using liquid chromatography quadrupole time-of-flight mass spectrometry) were employed. Frozen samples were diluted with either an acetonitrile:methanol:water (3:3:4) mixture. Each sample (5 L) was loaded onto an C18 column and was analyzed using an Agilent 6530 QTOF mass spectrometer (Agilent Technologies). Detailed protocol is obtained in this project'
Project description:CXCL14, a recently described chemokine constitutively expressed in various epithelia, has multiple putative roles in inflammation and carcinogenesis. Based on the knowledge that cigarette smoking and the smoking-induced disorders, such as chronic obstructive pulmonary disease (COPD) and lung cancer, are associated with inflammation, we hypothesized that the airway epithelium, the primary site of smoking-induced pathologic changes in COPD and adenocarcinoma, responds to cigarette smoking with an altered CXCL14 gene expression as a part of disease-relevant molecular phenotype. Microarray analysis with subsequent TaqMan PCR validation revealed very low constitutive CXCL14 gene expression in the airway epithelium of healthy nonsmokers (n=53) which was strongly up-regulated in healthy smokers ( n=59; p<0.001) and further increased in COPD smokers (n=23; p<10-7 vs nonsmokers; p<0.005 vs healthy smokers). In smokers, CXCL14 expression inversely correlated with lung function parameters FEV1 and FEV1/FVC. Genome-wide analysis also showed that up-regulated correlation of CXCL14 expression with genes related to cell growth and proliferation, squamous differentiation and cancer. The analysis of 193 lung adenocarcinoma samples demonstrated a dramatic up-regulation of CXCL14 in a smoking-dependent manner. [need to include survival data once we get it]. Together, these data suggest that smoking-induced expression of CXCL14 in association with genome-wide reprogramming of processes related to tissue homeostasis, differentiation and tumorigenesis, represents a novel molecular link between cigarette smoking, COPD and lung cancer.