Project description:There are two major subtype of cells in breast cancer. These cancer cells response differently to glutamine deprivation, here we use one luminal type of breast cancer cell (MCF7) and one basal type of breast cancer cell (MDAMB231) to compare the gene expression differences of these two types of cancer cells in glutamine deprivation. Many cancer cells depend on glutamine for survival and oncogenic transformation. Although targeting glutamine metabolism is proposed as novel therapies, their heterogeneity among different tumors is unknown. Here, we found only basal-type, but not luminal-type breast cancer cells, exhibited phenotypes of glutamine dependency and may benefit from glutamine-targeting therapeutics. The glutamine independence of luminal-type cells is caused by the specific expression of glutamine synthetase (GS), a pattern recapitulated in luminal breast cancers. The co-culture of luminal cells partially rescued the basal cells under glutamine deprivation, suggesting glutamine symbiosis. The luminal-specific expression of GS is directly induced GATA3 and down-regulates glutaminase expression to maintain subtype-specific glutamine metabolism. Collectively, these data indicate the distinct glutamine phenotypes among breast cells and enable the rational design of glutamine targeted therapies. Gene expression analysis in MCF7 and MDAMB231 cultured with or without glutamine for 24h
Project description:Breast cancer is genetically heterogeneous, and recent studies have underlined a prominent contribution of epigenetics to the development of this disease. To uncover new synthetic lethalities with known breast cancer oncogenes, we screened an epigenome-focused short hairpin RNA library on a panel of engineered breast epithelial cell lines. Here we report a selective interaction between the NOTCH1 signaling pathway and the SUMOylation cascade. Knockdown of the E2-conjugating enzyme UBC9 (UBE2I) as well as inhibition of the E1-activating complex SAE1/UBA2 using ginkgolic acid impairs the growth of NOTCH1-activated breast epithelial cells. We show that upon inhibition of SUMOylation NOTCH1-activated cells proceed slower through the cell cycle and ultimately enter apoptosis. Mechanistically, activation of NOTCH1 signaling depletes the pool of unconjugated small ubiquitin-like modifier 1 (SUMO1) and SUMO2/3 leading to increased sensitivity to perturbation of the SUMOylation cascade. Depletion of unconjugated SUMO correlates with sensitivity to inhibition of SUMOylation also in patient-derived breast cancer cell lines with constitutive NOTCH pathway activation. Our investigation suggests that SUMOylation cascade inhibitors should be further explored as targeted treatment for NOTCH-driven breast cancer. We treated MCF10A and NOTCH1 cells with either DMSO or ginkgolic acid 30 uM for 3 days. Two replicates have been analysed for each condition.
Project description:Breast tumors from BRCA1 germ line mutation carriers typically exhibit features of the basal-like molecular subtype. However, the specific genes recurrently mutated as a consequence of BRCA1 dysfunction have not been fully elucidated. In this study, we utilized gene expression profiling to molecularly subtype 577 breast tumors, including 73 breast tumors from BRCA1/2 mutation carriers. Focusing on the RB1 locus, we analyzed 33 BRCA1-mutated, 36 BRCA2-mutated and 48 non-BRCA1/2-mutated breast tumors using a custom-designed high-density oligomicroarray covering the RB1 gene. We found a strong association between the basal-like subtype and BRCA1-mutated breast tumors and the luminal B subtype and BRCA2-mutated breast tumors. RB1 was identified as a major target for genomic disruption in tumors arising in BRCA1 mutation carriers and in sporadic tumors with BRCA1 promoter-methylation, but rarely in other breast cancers. Homozygous deletions, intragenic breaks, or microdeletions were found in 33% of BRCA1-mutant tumors, 36% of BRCA1 promoter-methylated basal-like tumors, 13% of non-BRCA1 deficient basal-like tumors, and 3% of BRCA2-mutated tumors. In addition, RB1 was frequently inactivated by gross gene disruption in BRCA1-related hereditary breast cancer and BRCA1-methylated sporadic basal-like breast cancer, but rarely in BRCA2-hereditary breast cancer and non-BRCA1-deficient sporadic breast cancers. Together, our findings demonstrate the existence of genetic heterogeneity within the basal-like breast cancer subtype that is based upon BRCA1-status. Gene expression profiling of breast tumors. Dual color common reference gene expression study using 55K oligonucleotide microarrays.
Project description:There are two major subtype of cells in breast cancer. These cancer cells response differently to glutamine deprivation, here we use one luminal type of breast cancer cell (MCF7) and one basal type of breast cancer cell (MDAMB231) to compare the gene expression differences of these two types of cancer cells in glutamine deprivation. Many cancer cells depend on glutamine for survival and oncogenic transformation. Although targeting glutamine metabolism is proposed as novel therapies, their heterogeneity among different tumors is unknown. Here, we found only basal-type, but not luminal-type breast cancer cells, exhibited phenotypes of glutamine dependency and may benefit from glutamine-targeting therapeutics. The glutamine independence of luminal-type cells is caused by the specific expression of glutamine synthetase (GS), a pattern recapitulated in luminal breast cancers. The co-culture of luminal cells partially rescued the basal cells under glutamine deprivation, suggesting glutamine symbiosis. The luminal-specific expression of GS is directly induced GATA3 and down-regulates glutaminase expression to maintain subtype-specific glutamine metabolism. Collectively, these data indicate the distinct glutamine phenotypes among breast cells and enable the rational design of glutamine targeted therapies.