Project description:Burkholderia thailandensis is a soil-dwelling bacterium that shares many metabolic pathways with the ecologically similar, but evolutionarily distant, Pseudomonas aeruginosa. Among the diverse nutrients it can utilize is choline, which can be converted into the osmoprotectant glycine betaine and further catabolized as a source of carbon and nitrogen, similar to P. aeruginosa. Orthologs of genes in the choline catabolic pathway in these two bacteria showed distinct differences in gene arrangement as well as an additional orthologous transcriptional regulator in B. thailandensis. In this study, we showed that multiple glutamine amidotransferase1 (GATase1)-containing AraC-family transcription regulators (GATRs) are involved in regulation of the B. thailandensis choline catabolic pathway (gbdR1, gbdR2, souR). Using genetic analyses and sequencing the transcriptome in the presence and absence of choline, we identified the likely regulons of gbdR1 (BTH_II1869) and gbdR2 (BTH_II0968). We also identified a functional ortholog for P. aeruginosa souR, a GATR that regulates the metabolism of sarcosine to glycine. GbdR1 is absolutely required for expression of the choline catabolic locus, similar to P. aeruginosa GbdR, while GbdR2 is important to increase expression of the catabolic locus. Additionally, the B. thailandensis SouR ortholog (BTH_II0994) is required for catabolism of choline and its metabolites as carbon sources, whereas in P. aeruginosa, SouR function can by bypassed by GbdR. The strategy employed by B. thailandensis represents a distinct regulatory solution to control choline catabolism and thus provides both an evolutionary counterpoint and an experimental system to compare the acquisition and regulation of this pathway during environmental growth and infection.
Project description:FK228 [systematic name: (1S,4S,7Z,10S,16E,21R)-7-ethyl-idene-4,21-di(propan-2-yl)-2-oxa-12,13-dithia-5,8,20,23-tetra-za--bicyclo[8.7.6]tricos-16-ene-3,6,9,19,22-pentone], C(24)H(36)N(4)O(6)S(2), also known as FR901228, depsipeptide, NSC 630176, romidepsin, and marketed as Istodax by Celgene Corporation, is crystallized from ethyl acetate in P2(1) as compared to the absolute configuration of FK228, first crystallized from methanol in P2(1)2(1)2(1) [Shigematsu et al. (1994 ▶). J. Anti-biot.47, 311-314]. A slight difference is observed between the absolute configuration of FK228 and the present structure. The molecular structure is stabilized by intramolecular N-H⋯O hydrogen bonds. In the crystal, molecules are linked via N-H⋯O hydrogen bonds.
Project description:Innate immunity responds to pathogens by producing alarm signals and activating pathways that make host cells inhospitable for pathogen replication. The intracellular bacterium Burkholderia thailandensis invades the cytosol, hijacks host actin, and induces cell fusion to spread to adjacent cells, forming multinucleated giant cells (MNGCs) which promotes bacterial replication. We show that type I interferon (IFN) restricts macrophage MNGC formation during B. thailandensis infection. Guanylate-binding proteins (GBPs) expressed downstream of type I IFN were required to restrict MNGC formation through inhibition of Arp2/3-dependent actin motility during infection. GTPase activity and the CAAX prenylation domain were required for GBP2 recruitment to B. thailandensis, which restricted bacterial actin polymerization required for MNGC formation. Consistent with in vitro macrophages, Gbp2-/- Gbp5-/-, GbpChr3-KO mice were more susceptible to intranasal infection with B. thailandensis than wildtype mice. Our findings reveal that IFN and GBPs play a critical role in restricting cell-cell fusion during infection
Project description:Bioactivity-guided fractionation of an extract of Burkholderia thailandensis led to the isolation and identification of a new cytotoxic depsipeptide and its dimer. Both compounds potently inhibited the function of histone deacetylases 1 and 4. The monomer, spiruchostatin C (2), was tested side by side with the clinical depsipeptide FK228 (1, Istodax, romidepsin) in a murine hollow fiber assay consisting of 12 implanted tumor cell lines. Spiruchostatin C (2) showed good activity toward LOX IMVI melanoma cells and NCI-H522 non small cell lung cancer cells. Overall, however, FK228 (1) showed a superior in vivo antitumor profile in comparison to the new compound.
Project description:Burkholderia thailandensis is a nonpathogenic gram-negative bacillus that is closely related to Burkholderia mallei and Burkholderia pseudomallei. We found that B. thailandensis E125 spontaneously produced a bacteriophage, termed phiE125, which formed turbid plaques in top agar containing B. mallei ATCC 23344. We examined the host range of phiE125 and found that it formed plaques on B. mallei but not on any other bacterial species tested, including B. thailandensis and B. pseudomallei. Examination of the bacteriophage by transmission electron microscopy revealed an isometric head and a long noncontractile tail. B. mallei NCTC 120 and B. mallei DB110795 were resistant to infection with phiE125 and did not produce lipopolysaccharide (LPS) O antigen due to IS407A insertions in wbiE and wbiG, respectively. wbiE was provided in trans on a broad-host-range plasmid to B. mallei NCTC 120, and it restored LPS O-antigen production and susceptibility to phiE125. The 53,373-bp phiE125 genome contained 70 genes, an IS3 family insertion sequence (ISBt3), and an attachment site (attP) encompassing the 3' end of a proline tRNA (UGG) gene. While the overall genetic organization of the phiE125 genome was similar to lambda-like bacteriophages and prophages, it also possessed a novel cluster of putative replication and lysogeny genes. The phiE125 genome encoded an adenine and a cytosine methyltransferase, and purified bacteriophage DNA contained both N6-methyladenine and N4-methylcytosine. The results presented here demonstrate that phiE125 is a new member of the lambda supergroup of Siphoviridae that may be useful as a diagnostic tool for B. mallei.
Project description:Melioidosis is a serious infectious disease endemic to Southeast Asia and Northern Australia. This disease is caused by the Gram-negative bacterium Burkholderia pseudomallei; Burkholderia thailandensis is a closely-related organism known to be avirulent in humans. B. thailandensis has not previously been used to infect Drosophila melanogaster. We examined the effect of B. thailandensis infection on fly survival, on antimicrobial peptide expression, and on phagocytic cells. In the fruit fly, which possesses only an innate immune system, B. thailandensis is highly virulent, causing rapid death when injected or fed. One intriguing aspect of this infection is its temperature dependence: infected flies maintained at 25°C exhibit rapid bacterial proliferation and death in a few days, while infected animals maintained at 18°C exhibit very slow bacterial proliferation and take weeks to die; this effect is due in part to differences in immune activity of the host. Death in this infection is likely due at least in part to a secreted toxin, as injection of flies with sterile B. thailandensis-conditioned medium is able to kill. B. thailandensis infection strongly induces the expression of antimicrobial peptides, but this is insufficient to inhibit bacterial proliferation in infected flies. Finally, the function of fly phagocytes is not affected by B. thailandensis infection. The high virulence of B. thailandensis in the fly suggests the possibility that this organism is a natural pathogen of one or more invertebrates.