Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:The satellite cell of skeletal muscle provides a paradigm for quiescent and activated tissue stem cell states. We have carried out transcriptome analyses by comparing satellite cells from adult skeletal muscles, where they are mainly quiescent, with cells from growing muscles, regenerating (mdx) muscles, or with cells in culture, where they are activated. Our study gives new insights into the satellite cell biology during activation and in respect with its niche. We used microarrays to study the global programme of gene expression underlying adult satellite cell quiescence compared to activation states and to identify distinct classes of up-regulated genes in these two different states Skeletal muscle satellite cells were isolated by flow cytrometry using the GFP fluorescence marker from Pax3GFP/+ mice skeletal muscle. The transcriptome of quiescent satellite cells from adult Pax3GFP/+ muscle was compared to the transcriptome of activated satellite cells obtained from three different samples: 1) regenerating Pax3GFP/+:mdx/mdx muscle (Ad.mdx) , 2) growing 1 week old Pax3GFP/+ muscle (1wk), and 3) adult Pax3GFP/+ cells after 3 days in culture (Ad.cult).
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Satellite cells are responsible for the long-term regenerative capacity of adult skeletal muscle. The diminished muscle performance and regenerative capacity of aged muscle is thought to reflect progressive fibrosis and atrophy. Whether this reduction in muscle competency also involves a diminishment in the intrinsic regulation of satellite cell self-renewal remains unknown. We used microarray to identify gene expression changes underlying the marked reduction in the capacity of satellite cells to self-renew, contribute to regeneration and repopulate the niche as they age. Skeletal muscles from heterozygous Pax7-ZsGreen mice were isolated at defined stages: E17.5 (fetal - whole forelimb and hindlimb), postnatal day 21 (adolescent - hindlimb), 2-3 month old (young adult - hindlimb) and >1 year old (older adult - hindlimb) mice. ZsGreen-positive skeletal muscle satellite cells were isolated by FACS and pooled (fetal n=4, adolescent n=6, young adult n=8 and older adult n=8 mice).