Project description:Investigation of whole genome gene expression level changes in trichostatin A (TSA)-treated A. fumigatus Af293 compared to non-treated A. fumigatus Af293.
Project description:Genomic DNA from five strains, Aspergillus fumigatus Af71, Aspergillus fumigatus Af294, Aspergillus clavatus, Neosartorya fenneliae, and Neosartorya fischeri, were co-hybridized with that of Aspergillus fumigatus Af293 and compared.
Project description:The Negative cofactor 2 (NCT) complex is an evolutionally conserved heterodimeric transcription factor. In Aspergillus fumigatus, the NCT complex consists of two subunits NctA and NctB. Through a genome-wide screening of a transcription factor null mutant strains, we found that loss of the NCT complex leads to a multi-drug resistance phenotype including the azoles (itraconazole, voriconazole and posaconazole) as well as the salvage therapeutic amphotericin B, and terbinafine. To obtain further insight into the molecular mechanisms driving the azole-resistance in the NCT complex null mutants, we analyzed genome-wide gene expression profiles of the nctA and the nctB null mutants using RNA-seq. Our expression profiling revealed that disruption of the genes lead to upregulation of several ergosterol biosynthetic genes, their transcriptional activators, and the azole efflux pump cdr1B. Taken together, these results suggest that the NCT complex plays a role as a master regulator of drug resistance in A. fumigatus.
Project description:Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections including invasive aspergillosis. We aimed to understand molecular targets of AMB in Aspergillus fumigatus (Afu) by genomic approaches. Keywords: Aspergillus fumigatus treated with amphotericin B for 24 hours
Project description:Two mutant strains of Aspergillus fumigatus derived from strain A1160, HapB and 29.9, display resistance to the antifungal drug itraconazole. To understand what underlying transcriptional processes contribute to this resistance, A1160, HapB and 29.9 were cultured either in the presence or absence of itraconazole. RNA-sequencing was used to compare transcription profiles of each mutant strain with or without the drug, to A1160 with or without drug.
Project description:Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections including invasive aspergillosis. We aimed to understand molecular targets of AMB in Aspergillus fumigatus (Afu) by genomic approaches. Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections including invasive aspergillosis. We aimed to understand molecular targets of AMB in Aspergillus fumigatus (Afu) by microarray and proteomic methods. Keywords: Aspergillus fumigatus treated with amphotericin B for 24 hours Experiment was performed in dye swap manner from two different biological replicates
Project description:The Negative cofactor 2 (NCT) complex is an evolutionally conserved heterodimeric transcription factor. In Aspergillus fumigatus, the NCT complex consists of two subunits NctA and NctB. Through a genome-wide screening of a transcription factor null mutant strains, we found that loss of the NCT complex leads to a multi-drug resistance phenotype including the azoles (itraconazole, voriconazole and posaconazole) as well as the salvage therapeutic amphotericin B, and terbinafine. To obtain further insight into the molecular mechanisms driving the azole-resistance in the NCT complex null mutants, we analyzed genome-wide binding profiles of NctA using chromatin-immunoprecipitation sequencing (ChIP-seq). Our ChIP-seq analysis revealed that NCT complex binds the promoters of several ergosterol biosynthetic genes, their transcriptional regulators, and the azole efflux pump cdr1B. Taken together, these results suggest that the NCT complex plays a role as a master regulator of drug resistance in A. fumigatus.