Project description:Eed (embryonic ectoderm development) is a core component of the Polycomb Repressive Complex 2 (PRC2) which catalyzes the methylation of histone H3 lysine 27 (H3K27). Trimethylated H3K27 (H3K27me3) can act as a signal for PRC1 recruitment in the process of gene silencing and chromatin condensation. Previous studies with Eed KO ESCs revealed a failure to down-regulate a limited list of pluripotency factors in differentiating ESCs. Our aim was to analyze the consequences of Eed KO for ESC differentiation. To this end we first analyzed ESC differentiation in the absence of Eed and employed in silico data to assess pluripotency gene expression and H3K27me3 patterns. We linked these data to expression analyses of wildtype and Eed KO ESCs. We observed that in wildtype ESCs a subset of pluripotency genes including Oct4, Nanog, Sox2 and Oct4 target genes progressively gain H3K27me3 during differentiation. These genes remain expressed in differentiating Eed KO ESCs. This suggests that the deregulation of a limited set of pluripotency factors impedes ESC differentiation. Global analyses of H3K27me3 and Oct4 ChIP-seq data indicate that in ESCs the binding of Oct4 to promoter regions is not a general predictor for PRC2-mediated silencing during differentiation. However, motif analyses suggest a binding of Oct4 together with Sox2 and Nanog at promoters of genes that are PRC2-dependently silenced during differentiation. In summary, our data further characterize Eed function in ESCs by showing that Eed/PRC2 is essential for the onset of ESC differentiation. RNAs obtained from undifferentiated (d0) wild type and Eed KO ESCs and from day 3 (d3) and day 7 (d7) respective Ebs were subjected to Affymetrix Mouse Gene 1.0 ST Array. 24 samples in total.
Project description:Eed (embryonic ectoderm development) is a core component of the Polycomb Repressive Complex 2 (PRC2) which catalyzes the methylation of histone H3 lysine 27 (H3K27). Trimethylated H3K27 (H3K27me3) can act as a signal for PRC1 recruitment in the process of gene silencing and chromatin condensation. Previous studies with Eed KO ESCs revealed a failure to down-regulate a limited list of pluripotency factors in differentiating ESCs. Our aim was to analyze the consequences of Eed KO for ESC differentiation. To this end we first analyzed ESC differentiation in the absence of Eed and employed in silico data to assess pluripotency gene expression and H3K27me3 patterns. We linked these data to expression analyses of wildtype and Eed KO ESCs. We observed that in wildtype ESCs a subset of pluripotency genes including Oct4, Nanog, Sox2 and Oct4 target genes progressively gain H3K27me3 during differentiation. These genes remain expressed in differentiating Eed KO ESCs. This suggests that the deregulation of a limited set of pluripotency factors impedes ESC differentiation. Global analyses of H3K27me3 and Oct4 ChIP-seq data indicate that in ESCs the binding of Oct4 to promoter regions is not a general predictor for PRC2-mediated silencing during differentiation. However, motif analyses suggest a binding of Oct4 together with Sox2 and Nanog at promoters of genes that are PRC2-dependently silenced during differentiation. In summary, our data further characterize Eed function in ESCs by showing that Eed/PRC2 is essential for the onset of ESC differentiation.
Project description:We mapped long-range chromatin interactions in embryonic stem cells (ESCs), iPSCs, and fibroblasts, and uncovered an ESC-specific genome organization that is gradually re-established during reprogramming. Confirming previous results, we show that open, accessible and closed chromatin character is the primary determinant of long-range chromatin interaction preferences. Importantly, we find that in ESCs, genomic regions extensively occupied by the pluripotency factors Oct4, Sox2, and Nanog preferentially co-localize. Similarly, regions strongly enriched for Polycomb-proteins and H3K27me3 frequently interact, and loss of the Polycomb-protein Eed diminishes these interactions without dramatically changing overall chromosome-conformation. Consistent with a spatial segregation of transcriptional networks in ESCs, Nanog and Polycomb-proteins occupy distinct nuclear spaces. Together, our data reveal that transcriptional networks that govern ESC identity play a role in genome-organization. 4C-seq was performed using a variety of baits on range of mouse cell lines, namely, ESCs, reprogrammed iPSCs, partially reprogrammed pre-iPSCs, and differentiated MEFs. Additionally, 4C-seq was performed on a partially overlapping set of baits for a Eed mutant mouse ESC line and a sibling wild-type ESC line.
Project description:Polycomb Repressive Complexes 1 and 2 (PRC1 and 2) play a critical role in the epigenetic regulation of transcription during cellular differentiation, stem cell pluripotency, and neoplastic progression1-3. Here we show that the Polycomb group protein EED, a core component of PRC2, physically interacts with and functions as part of the PRC1 complex. Components of PRC1 and PRC2 compete for EED binding. EED functions to recruit PRC1 to H3K27me3 loci and enhances PRC1 mediated H2A ubiquitin E3 ligase activity. Taken together, we uncover the integral role of EED as an epigenetic exchange factor coordinating the activities of PRC1 and 2. EED, uH2A, RING1A, RING1B, BMI1 and H3K27Me3 ChIP-seq in EED stable knockdown and control Scramble DU145 prostate cancer cell line
Project description:The Polycomb group (PcG) gene products mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes-1 (PRC1) and -2 (PRC2). PRC2 catalyses trimethylation of histone H3 at lysine 27 (H3K27) which in turn is thought to provide a recruitment site for PRC1. Recent studies demonstrate that mono-ubiquitylation of histone H2A at lysine 119 is important in PcG mediated silencing with the core PRC1 component Ring1A/B functioning as the E3 ligase8. PRC2 has been shown to share target genes with the core transcription network to maintain embryonic stem (ES) cells including Oct4 and Nanog. Here we identify an essential role for PRC1 in repressing developmental regulators in ES cells, and thereby in maintaining ES cell pluripotency. A significant proportion of the PRC1 target genes are also repressed by Oct4. We demonstrate that engagement of PRC1 and PRC2 at target genes is Oct4-dependent and moreover that Ring1B interacts with Oct4. Collectively these results show that PcG complexes are instrumental in Oct4-dependent repression required to maintain pluripotency of ES cells. This study provides a first functional link between a core ES cell regulator and global epigenetic regulation of the genome. Experiment Overall Design: Eed is a protein included in PRC2 (Polycomb repressor complex). Experiment Overall Design: We generated constitutive Eed KO mouse ES cells and observed gene expression using Affymetrix MOE430.2 microarray. Experiment Overall Design: These results were compared with other KO cells of PRC1 proteins (Ring1A, Ring1B) and other proteins in our study.
Project description:Polycomb Repressive Complexes 1 and 2 (PRC1 and 2) play a critical role in the epigenetic regulation of transcription during cellular differentiation, stem cell pluripotency, and neoplastic progression1-3. Here we show that the Polycomb group protein EED, a core component of PRC2, physically interacts with and functions as part of the PRC1 complex. Components of PRC1 and PRC2 compete for EED binding. EED functions to recruit PRC1 to H3K27me3 loci and enhances PRC1 mediated H2A ubiquitin E3 ligase activity. Taken together, we uncover the integral role of EED as an epigenetic exchange factor coordinating the activities of PRC1 and 2.
Project description:We mapped long-range chromatin interactions in embryonic stem cells (ESCs), iPSCs, and fibroblasts, and uncovered an ESC-specific genome organization that is gradually re-established during reprogramming. Confirming previous results, we show that open, accessible and closed chromatin character is the primary determinant of long-range chromatin interaction preferences. Importantly, we find that in ESCs, genomic regions extensively occupied by the pluripotency factors Oct4, Sox2, and Nanog preferentially co-localize. Similarly, regions strongly enriched for Polycomb-proteins and H3K27me3 frequently interact, and loss of the Polycomb-protein Eed diminishes these interactions without dramatically changing overall chromosome-conformation. Consistent with a spatial segregation of transcriptional networks in ESCs, Nanog and Polycomb-proteins occupy distinct nuclear spaces. Together, our data reveal that transcriptional networks that govern ESC identity play a role in genome-organization.
Project description:We used microarrays to detail the role of Polycomb proteins including Ezh2 and Eed in maintaining ES cell identity and executing pluripotency. Experiment Overall Design: To assay the global effects of the loss of polycomb proteins (Ezh2 or Eed) in embryonic stem (ES) cells , we compared the expression profiles of homologuous Ezh2 or Eed knockout ES cells to wild-type ES cells in undifferentiated or differentiated condition.
Project description:Polycomb group proteins are transcriptional repressors that control cell identity and development. In mammals, at least five different CBX proteins are believed to associate with the core Polycomb repressive complex 1 (PRC1). CBX6 and CBX7 are the most highly expressed CBX proteins in embryonic stem cells (ESCs), yet little is known about the function of CBX6 in these cells. Here we show that CBX6 is an essential regulator of ESC identity, since ablation of CBX6 function destabilizes the pluripotency network and triggers differentiation. At the molecular level, CBX6 is linked to the canonical PRC1 (cPRC1) complex; however, contrary to expectations, our results indicate that CBX6 also has a non-canonical PRC1 function. Taken together, our findings reveal that CBX6 is an essential component for ESC biology and contributes to the structural and functional complexity of the PRC1 complex.
Project description:Analysis of changes in gene expression in skin epidermis upon conditional knockout of the essential Polycomb repressive complex 2 (PRC2) subunit Eed. Loss of Eed in skin epithelium leads to de-repression of key Merkel-differentiation genes, which are known PRC2 targets, and results in ectopic formation of Merkel cells that are associated with all hair types. Gene expression analysis: To determine the changes in gene expression in skin epidermis upon conditional knockout of Eed, total RNA was isolated from skin epidermis in four biologic replicates from cells in different conditions and hybridized to SurePrint G3 Mouse GE 8X60K microarrays (Agilent).