ABSTRACT: Differentiation of human amniotic fluid kidney progenitor cells into podocytes and comparison with human conditionally immortalized podocytes
Project description:In this work, we isolated and characterized a novel cell population derived from human amniotic fluid cells (hAKPC-P), and we differentiated them into podocytes. We used microarrays to study global changes in gene expression before and after differentiation in hAKPC-P and human immortalized podocytes (hIPod, positive control) and performed a detailed comparison between the different populations hAKPC-P were isolated by FACS sorting from the total human amniotic fluid cell population and differentiated into podocytes using VRADD media. Morphological, phenotypical and functional analysis were performed to assess their differentiation. To confirm the results, cells were compared with human conditionally immortalized podocytes.
Project description:Differentiation of human amniotic fluid kidney progenitor cells into podocytes and comparison with human conditionally immortalized podocytes
Project description:In this work, we isolated and characterized a novel cell population derived from human amniotic fluid cells (hAKPC-P), and we differentiated them into podocytes. We used microarrays to study global changes in gene expression before and after differentiation in hAKPC-P and human immortalized podocytes (hIPod, positive control) and performed a detailed comparison between the different populations
Project description:The specialized glomerular epithelial cell (podocyte) of the kidney is a complex cell that is often damaged in glomerular diseases. Study of this cell type is facilitated by an in vitro system of propagation of conditionally immortalized podocytes. Here, genes that are differentially expressed in this in vitro model of podocyte differentiation are evaluated. Conditionally immortalized undifferentiated mouse podocytes were cultured under permissive conditions at 33*C. Podocytes that were differentiated at the non-permissive conditions at 37*C were used for comparison.
Project description:Podocytes play an important filtration role in the kidney. We examined culture condition for efficient podocyte induction and established a method to selectively induce podocytes from human iPS cells. To understand how expression profiles of human iPS cell-derived podocytes were close to that in vivo, we isolated human adult podocytes for human adult kidney. Purified RNAs from human iPS cells, nephron progenitor cells, human immortalized podocyte cell line, human iPS cell-derived podocytes, and sorted human adult podocytes were analyzed by RNA-seq.
Project description:We performed single-cell sequencing to characterize the cell types that are present in human induced pluripotent stem cell derived (iPS) kidney organoids and their transcriptional profile. Furthermore, using bulk RNA sequencing we compared the transcriptional profile of kidney organoid derived podocytes from a wildtype iPS line, an iPS line with 2 mutations in podocin (NPHS2) which causes clinical manifestation of nephrotic syndrome and an iPS line with one of these mutations repaired which causes no clinical symptoms. For reference and comparison we took along human in vivo glomeruli and a human conditionally immortalized podocyte cell line.
Project description:The specialized glomerular epithelial cell (podocyte) of the kidney is a complex cell that is often damaged in glomerular diseases. Study of this cell type is facilitated by an in vitro system of propagation of conditionally immortalized podocytes. Here, genes that are differentially expressed in this in vitro model of podocyte differentiation are evaluated.
Project description:Podocyte detachment due to mechanical stress is a common issue in hypertension-induced kidney disease. The present study investigated the proteome alterations in mechanically stretched podocytes, a model for glomerular hypertension in comparison to non-stretched cells. Conditionally immortalized differentiated podocytes were seeded on flexible silicon membranes of a six well plate, which was mounted on a manifold connected to a custom-built stretch apparatus (NIPOKA GmbH, Greifswald, Germany), which induced cyclic pressure variations resulting in upward and downward motion of the silicone membranes. Pressure amplitude was chosen to give a maximum up- and downward deflection of the membrane centre of 6 mm (low stretch).
Project description:Podocyte detachment due to mechanical stress is a common issue in hypertension-induced kidney disease. The present study investigated the proteome alterations in mechanically stretched podocytes, a model for glomerular hypertension in comparison to non-stretched cells. Conditionally immortalized differentiated podocytes were seeded on flexible silicon membranes of a six well plate, which was mounted on a manifold connected to a custom-built stretch apparatus (NIPOKA GmbH, Greifswald, Germany), which induced cyclic pressure variations resulting in upward and downward motion of the silicone membranes. Pressure amplitude was chosen to give a maximum up- and downward deflection of the membrane centre of 8 mm (high stretch).