Project description:We focused on how Mycobacterium avium subsp. paratuberculosis influences the subsequent host response to investigate the host immunopathology accompanying the host anti-mycobacterial immune response during Mycobacterium avium subsp. paratuberculosis infection in spleen of mice.
Project description:We focused on how Mycobacterium avium subsp. paratuberculosis influences the subsequent host response to investigate the host immunopathology accompanying the host anti-mycobacterial immune response during Mycobacterium avium subsp. paratuberculosis infection in spleen of mice. We analyzed altered transcription in the spleen of mice at 3, 6, and 12 weeks following Mycobacterium avium subsp. paratuberculosis infection.
Project description:To provide novel insights into understanding the host-immune response during the different stages of progression of the disease, we performed gene expression profiling in Mycobacterium avium subsp. paratuberculosis infection in cattle.
Project description:Detection of species-specific proteotypic peptides for accurate and easy characterization of infectious non-tuberculous mycobacteria such as Mycobacterium avium subsp. paratuberculosis, Mycobacterium marinum and Mycobacterium vaccae is essential. Therefore, we carried out reanalysis of publicly available M. avium subsp. paratuberculosis, M. marinum and M. vaccae proteomic dataset PXD027444, PXD003766 and PASS00954 by proteome database search and followed by spectral library generation. The raw DDA data were searched against their respective reference proteome databases using Proteome Discoverer and FragPipe. The resulting peptide spectrum matches were converted into a spectral library using BiblioSpec.
Project description:Once entering the cell, M. avium subsp.paratuberculosis is known to survive harsh microenvironments, especially those inside activated macrophages. To improve our understanding of M. avium subsp.paratuberculosis pathogenesis, we examined the phagosome maturation associated with transcriptional responses of M. avium subsp.paratuberculosis during macrophage infection. Monitoring cellular markers, only live M. avium subsp.paratuberculosis bacilli were able to prevent phagosome maturation and reduce its acidification. On the transcriptional level, over 300 of M. avium subsp.paratuberculosis genes were significantly, differentially regulated in both naM-CM-/ve and IFN-M-NM-3-activated macrophages. These genes include the sigma factor H (sigH) that was shown to be important during persistent infection in M. tuberculosis. Bacterial total RNA was purified from Mycobacterium avium subsp. paratuberculosis that was infected into J774A.1 cells grown with or without interferon-gamma activation at 2 or 24 h post-infection. RNA from bacteria incubated with PRMI-1640 medium for 2 h, which was the infection conditon, is used as control condition. Each condition has two biological replicates. Each hybridization represents expression levels of all 4,350 annotated genes with 20 60-mer oligonucleotides and with three technical replicates.