Project description:Genetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many of the potential applications are still limited by the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. These challenges could be overcome by the use of adult tissue stem cells derived from hPSCs, as their restricted potential could limit the differentiation towards other undesired linages, and allow in vitro expansion and long- term propagation of fully differentiated tissue. To isolate adult stem cells from hPSCs, we applied genome-editing to generate an LGR5-GFP reporter system and subsequently developed a differentiation protocol for human intestinal tissue comprising an adult stem cell niche and all major cell types of the adult intestine. This novel derivation protocol is highly robust and even permits the isolation of intestinal organoids without the LGR5 reporter. Transcriptional profiling, electron microscopy and functional analysis revealed that such human organoid cultures could be derived with high purity, and a composition and morphology similar to that of cultures obtained from human biopsies. Importantly, hPSC-derived organoids responded to the canonical signaling pathways that control self-renewal and differentiation in the adult human intestinal stem cell compartment. With our ability to genetically engineer hPSCs using site-specific nucleases, this adult stem cell system provides a novel platform by which to study human intestinal disease in vitro.
Project description:Genetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many of the potential applications are still limited by the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. These challenges could be overcome by the use of adult tissue stem cells derived from hPSCs, as their restricted potential could limit the differentiation towards other undesired linages, and allow in vitro expansion and long- term propagation of fully differentiated tissue. To isolate adult stem cells from hPSCs, we applied genome-editing to generate an LGR5-GFP reporter system and subsequently developed a differentiation protocol for human intestinal tissue comprising an adult stem cell niche and all major cell types of the adult intestine. This novel derivation protocol is highly robust and even permits the isolation of intestinal organoids without the LGR5 reporter. Transcriptional profiling, electron microscopy and functional analysis revealed that such human organoid cultures could be derived with high purity, and a composition and morphology similar to that of cultures obtained from human biopsies. Importantly, hPSC-derived organoids responded to the canonical signaling pathways that control self-renewal and differentiation in the adult human intestinal stem cell compartment. With our ability to genetically engineer hPSCs using site-specific nucleases, this adult stem cell system provides a novel platform by which to study human intestinal disease in vitro. RNA from primary organoid samples was isolated from organoid lines that were both cultured for 1-6 months and derived from duodenum, ileum, or rectum biopsies of human subjects as described previously (Sato et al., Gastroenterology 2011) grown in media called WENR+inhibitors. RNA was also isolated from various steps in the culturing and differentiation protocol.
Project description:Homeostasis of self-renewing small intestinal crypts results from neutral competition between Lgr5 stem cells, small cycling cells located at crypt bottoms1, 2. Lgr5 stem cells are interspersed between terminally differentiated Paneth cells, that are known to produce bactericidal products such as lysozyme and cryptdins/defensins3. Single Lgr5-expressing stem cells can be cultured to form long-lived, self-organizing crypt-villus organoids in the absence of non-epithelial niche cells4. Here, we note a close physical association of Lgr5 stem cells with Paneth cells in vivo and in vitro. CD24+ Paneth cells express EGF, TGF?, Wnt3 and the Notch-ligand Dll4, all essential signals for stem cell maintenance in culture. Co-culturing of sorted stem cells with Paneth cells dramatically improves organoid formation. This Paneth cell requirement can be substituted by a pulse of exogenous Wnt. Genetic removal of Paneth cells in vivo results in the concomitant loss of Lgr5 stem cells. In colon crypts, CD24+ cells residing between Lgr5 stem cells may represent the Paneth cell equivalents. We conclude that Lgr5 stem cells compete for essential niche signals provided by a specialized daughter cell, the Paneth cell. We used intestinal cell fractions from Lgr5-EGFP-ires-CreERT2 mice, expressing GFP under the control of the Lgr5 promoter. RNA was isolated from two FACS sorted cell populations: stem cells were sorted based on high level of GFP expression (GFPhi) and Paneth cells were sorted based on high level of CD24 expression (CD24hi) and high side-scatter (SSChi). Differentially labelled cRNA from GFPhi and CD24hi/SSChi cells from two different sorts (each combining ten individual mice) were hybridized on 4X44K Agilent Whole Mouse Genome dual colour Microarrays (G4122F) in two dye swap experiments, resulting in four individual arrays.
Project description:To further elucidate the role of the intestinal stem cell marker Leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) in colorectal cancer (CRC), we exposed Lgr5-EGFP-IRES-Cre-ERT2 mice to azoxymethane/dextrane sodium sulfate (AOM/DSS) which induces inflammation-driven colon tumors. Tumors were then flow-sorted into fractions of epithelial cells that expressed high or low levels of Lgr5 and were characterized using gene expression profiling. In the AOM/DSS-induced mouse colon tumors Lgr5 high cells showed higher levels of several stem cell-associated genes and higher Wnt signaling than Lgr5 low tumor cells and Lgr5 high normal colon epithelial cells. To further elucidate the role of the intestinal stem cell marker Leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) in colorectal cancer (CRC), we transduced SW480 CRC cells with lentiviral shRNA constructs to silence LGR5 expression. This resulted in a depletion of spheres but did not affect adherently growing cells. Spheres expressed higher levels of several stem cell-associated genes than adherent cells. Notch signaling was down-regulated upon LGR5 silencing. This was confirmed by immunohistochemistry against cleaved NOTCH1. Normal mouse colons and AOM/DSS-induced mouse colon tumors were flow-sorted into Lgr5 high and low cells before gene expression was measured. Fifteen independent experiments were performed using seven individual mice for normal colons and eight for tumors. Appropriate LGR5 status was confirmed by real-time qRT-PCR before measuring silencing induced gene expression. Three independent experiments were performed for each cell fraction using separately cultured cells for each experiment.
Project description:Perturbed intestinal epithelial homeostasis demonstrated as decreased Lgr5+ intestinal stem cells (Lgr5 ISCs) and increased secretory lineages were observed in our study where Lkb1 was specfically deleted in Lgr5 ISCs using Lgr5-EGFP-creERT2 (Tamoxifen) deletor. To gain mechanistic insight how Lkb1 maintains intestinal epithelial stem cell homeostasis, Lkb1 deficient ISCs (Lgr5-high cells) and progenitors (Lgr5-low cells) are isolated by flow cytometry and profiled by RNA sequencing to compare with controls (Lkb1 wild type ISCs and progenitors).
Project description:Background & Aims: Hierarchical organization of intestine relies on their stem cells by self-renew and producing committed progenitors. Although signals like Wnt are known to animate the continued renewal by maintaining intestinal stem cells (ISCs) activity, molecular mechanisms especially E3 ubiquitin ligases that modulate ISCs ‘stemness’ and supportive niche have not been well understood. Here, we investigated the role of Cullin 4B (Cul4b) in regulating ISC functions. Methods: We generated mice with intestinal epithelial-specific disruption of Cul4b (pVillin-cre; Cul4bfn/Y), inducible disruption of Cul4b (Lgr5-creERT2; Cul4bfn/Y, CAG-creERT2; Cul4bfn/Y) and their control (Cul4bfn/Y). Intestinal tissues were analyzed by histology, immunofluorescence, RNA sequencing and mass spectrum. Intestinal organoids deprived from mice with pVillin-Cre; Cul4bfn/Y, Lgr5-Cre; Cul4bfn/Y, Tg-Cul4b and their controls were used in assays to measure intestinal self-renewal, proliferation and differentiation. Wnt signaling and intestinal markers were analyzed by immunofluorescence and immunoblot assays. Differential proteins upon Cul4b ablation or Cul4b-interacting proteins were identified by mass spectrometry. Results: Cul4b specifically located at ISCs zone. Block of Cul4b impaired intestinal homeostasis maintenance by reduced self-renewal and proliferation. Transcriptome analysis revealed that Cul4b-null intestine lose ISC characterization and showed disturbed ISC niche. Mechanistically, reactivated Wnt pathway could recover intestinal dysfunction of Cul4b knockout mice. Analysis of differential total and ubiquitylated proteins uncovered the novel targeting substrate of Cullin-Ring ubiquitin ligase 4b (CRL4b), immunity-related GTPase family M member 1 (Irgm1) in intestine. Decreased Irgm1 rescued abnormally interferon signaling, overemphasized autophagy and downstream phosphate proteins in Cul4b knockout mice. Conclusion: We conclude that Cul4b is essential for ISC self-renewal and Paneth cell function by targeting Irgm1 and modulating Wnt signaling. Our results demonstrate that Cul4b is a novel ISC stemness and niche regulator.
Project description:Paneth cells (PCs) are long-lived secretory cells that reside at the bottoms of small intestinal crypts. Besides serving as niche cells for the neighboring Lgr5-positive stem cells, PCs secrete granules containing a broad spectrum of antimicrobial proteins, including lysozymes and defensins1. Here, we have used single-cell RNA sequencing to explore PC differentiation. We found a maturation gradient from early secretory progenitors to mature PCs, capturing the full maturation path of PCs. Moreover, differential expression of a subset of defensin genes in lysozyme-high PCs, e.g. Defa20, reveals at least two distinct stages of maturation. We traced Lgr5+ stem cells from Lgr5-CreERT2 C57Bl6/J mice bred to a Rosa26LSL-YFP reporter mice and sorted YFP+ cells 5 days, 3 weeks and 8 weeks after tamoxifen injection.
Project description:We used unbiased whole genome bisulfite sequencing (WGBS) to identify DNA methylation changes in the intestinal stem cells (ISCs) or their progeny during the suckling period of mouse colon development. Lgr5-EGFP mice were used to identify ISC populations in the colons. WGBS were performed using EGFP labeled Lgr5+ ISCs and epithelial cell adhesion molecule (EpCAM) labeled epithelial cells isolated at the beginning and end of the suckling period (postnatal day 0-P0 and P21).
Project description:We used RNA sequencing to quantify the gene expression levels in the intestinal stem cells (ISCs) or their progeny during the suckling period of mouse colon development. Lgr5-EGFP mice were used to identify ISC populations in the colons. RNA sequencing was performed using EGFP labeled Lgr5+ ISCs and epithelial cell adhesion molecule (EpCAM) labeled epithelial cells isolated at the beginning and end of the suckling period (postnatal day 0-P0 and P21).