Project description:To identify a cancer-associated fibroblast (CAF)-specific molecule that contributes to tumor-promoting effect, we utilized trnascriptome analysis. We performed RNA-sequencing with three normal fibroblast (NF)-CAF pairs derived from diffuse-type gastric cancer patients’ tissues. RNA-sequencing revealed several commonly increased CAF-specific genes among each pair.
Project description:The tumor microenvironment strongly influences cancer development, progression and metastasis. The role of carcinoma-associated fibroblasts (CAFs) in these processes and their clinical impact has not been studied systematically in non-small cell lung carcinoma (NSCLC). We established primary cultures of CAFs and matched normal fibroblasts (NFs) from 15 resected NSCLC. We demonstrate that CAFs have greater ability than NFs to enhance the tumorigenicity of lung cancer cell lines. Microarray gene expression analysis of the 15 matched CAF and NF cell lines identified 46 differentially expressed genes, encoding for proteins that are significantly enriched for extracellular proteins regulated by the TGF-beta signaling pathway. We have identified a subset of 11 genes that formed a prognostic gene expression signature, which was validated in multiple independent NSCLC microarray datasets. Functional annotation using protein-protein interaction analyses of these and published cancer stroma-associated gene expression changes revealed prominent involvement of the focal adhesion and MAPK signalling pathways. Fourteen (30%) of the 46 genes also were differentially expressed in laser-capture micro-dissected corresponding primary tumor stroma compared to the matched normal lung. Six of these 14 genes could be induced by TGF-beta1 in NF. The results establish the prognostic impact of CAF-associated gene expression changes in NSCLC patients. 30 samples: 15 primary NSCLC fibroblast cell lines, 15 normal lung fibroblast cell lines
Project description:The tumor microenvironment strongly influences cancer development, progression and metastasis. The role of carcinoma-associated fibroblasts (CAFs) in these processes and their clinical impact has not been studied systematically in non-small cell lung carcinoma (NSCLC). We established primary cultures of CAFs and matched normal fibroblasts (NFs) from 15 resected NSCLC. We demonstrate that CAFs have greater ability than NFs to enhance the tumorigenicity of lung cancer cell lines. Microarray gene expression analysis of the 15 matched CAF and NF cell lines identified 46 differentially expressed genes, encoding for proteins that are significantly enriched for extracellular proteins regulated by the TGF-beta signaling pathway. We have identified a subset of 11 genes that formed a prognostic gene expression signature, which was validated in multiple independent NSCLC microarray datasets. Functional annotation using protein-protein interaction analyses of these and published cancer stroma-associated gene expression changes revealed prominent involvement of the focal adhesion and MAPK signalling pathways. Fourteen (30%) of the 46 genes also were differentially expressed in laser-capture micro-dissected corresponding primary tumor stroma compared to the matched normal lung. Six of these 14 genes could be induced by TGF-beta1 in NF. The results establish the prognostic impact of CAF-associated gene expression changes in NSCLC patients. Methylation profiles of 5 pairs of were included in a molecular characterization of NSCLC fibroblast cell lines (CAFs) vs. normal lung fibroblasts (NFs). Methylation profiles of 5 paired primary NSCLC fibroblast cell lines (CAFs) and normal lung fibroblasts (NFs) were generated. Genes were determined to be hyper- and hypo-methylated based on paired analysis.
Project description:The tumor microenvironment strongly influences cancer development, progression and metastasis. The role of carcinoma-associated fibroblasts (CAFs) in these processes and their clinical impact has not been studied systematically in non-small cell lung carcinoma (NSCLC). We established primary cultures of CAFs and matched normal fibroblasts (NFs) from 15 resected NSCLC. We demonstrate that CAFs have greater ability than NFs to enhance the tumorigenicity of lung cancer cell lines. Microarray gene expression analysis of the 15 matched CAF and NF cell lines identified 46 differentially expressed genes, encoding for proteins that are significantly enriched for extracellular proteins regulated by the TGF-beta signaling pathway. We have identified a subset of 11 genes that formed a prognostic gene expression signature, which was validated in multiple independent NSCLC microarray datasets. Functional annotation using protein-protein interaction analyses of these and published cancer stroma-associated gene expression changes revealed prominent involvement of the focal adhesion and MAPK signalling pathways. Fourteen (30%) of the 46 genes also were differentially expressed in laser-capture micro-dissected corresponding primary tumor stroma compared to the matched normal lung. Six of these 14 genes could be induced by TGF-beta1 in NF. The results establish the prognostic impact of CAF-associated gene expression changes in NSCLC patients. Genotyping profiles of 4 pairs of were included in a molecular characterization of NSCLC fibroblast cell lines (CAFs) vs. normal lung fibroblasts (NFs). Genotyping profiles of 4 paired primary NSCLC fibroblast cell lines (CAFs) and normal lung fibroblasts (NFs) were generated. CNV was assessed using paired analysis.
Project description:Cancer Associated Fibroblasts (CAF) are a dominant and critical cell type of the tumour microenvironment and can lead to breast cancer progression. TGF-β has been reported to influence fibroblast to myofibroblast activation, which is similar to cancer associated fibroblast phenotype. To understand the mechanism of TGF-β mediated CAF phenotype, we have performed a comparative proteomic analysis of conditioned media from CAF (isolated from breast cancer biopsy tissues) and normal mammary fibroblasts engineered to over-express TGF-β1. Liquid chromatography/ tandem mass spectrometry (LC ESI Q-TOF-MS/MS) assay of conditioned media and Venn analysis of the acquired data, revealed approximately 185 common proteins secreted by the three fibroblast types (CAF, normal mammary fibroblasts and TGF-β over expressing mammary fibroblasts). Among these, 12 proteins exclusively overlap between normal fibroblasts and CAF and 20 proteins exclusively overlap between CAF and TGF-β1 over-expressing fibroblasts. This analysis reveals interesting targets which may be important in activation phenotype of CAF and breast cancer progression.
Project description:Analysis of differentially expressed genes in CAF associated with PDAC vs NF. Genetically engineered mice with spontaneous pancreas cancer were generated. Their genotype is Ptfa-cre/+:LSL KrasG12D/+;Tgfrb2flox/flox. Cancer associated fibroblasts were expanded in vitro from the tumors of these mice (CAF). Normal fibroblasts (NF) were also expanded from normal pancreas of mice. The experiement consists in comparing the expression profile of CAF vs. NF. Expanded cultures of fibroblasts in vitro from pancreas tumor and normal pancreas tissue were lyzed in TRIzol and RNA extracted from them.
Project description:Analysis of differentially expressed genes in CAF associated with PDAC vs NF. Genetically engineered mice with spontaneous pancreas cancer were generated. Their genotype is Ptfa-cre/+:LSL KrasG12D/+;Tgfrb2flox/flox. Cancer associated fibroblasts were expanded in vitro from the tumors of these mice (CAF). Normal fibroblasts (NF) were also expanded from normal pancreas of mice. The experiement consists in comparing the expression profile of CAF vs. NF.
Project description:The tumor microenvironment strongly influences cancer development, progression and metastasis. The role of carcinoma-associated fibroblasts (CAFs) in these processes and their clinical impact has not been studied systematically in non-small cell lung carcinoma (NSCLC). We established primary cultures of CAFs and matched normal fibroblasts (NFs) from 15 resected NSCLC. We demonstrate that CAFs have greater ability than NFs to enhance the tumorigenicity of lung cancer cell lines. Microarray gene expression analysis of the 15 matched CAF and NF cell lines identified 46 differentially expressed genes, encoding for proteins that are significantly enriched for extracellular proteins regulated by the TGF-beta signaling pathway. We have identified a subset of 11 genes that formed a prognostic gene expression signature, which was validated in multiple independent NSCLC microarray datasets. Functional annotation using protein-protein interaction analyses of these and published cancer stroma-associated gene expression changes revealed prominent involvement of the focal adhesion and MAPK signalling pathways. Fourteen (30%) of the 46 genes also were differentially expressed in laser-capture micro-dissected corresponding primary tumor stroma compared to the matched normal lung. Six of these 14 genes could be induced by TGF-beta1 in NF. The results establish the prognostic impact of CAF-associated gene expression changes in NSCLC patients. Methylation profiles of 5 pairs of were included in a molecular characterization of NSCLC fibroblast cell lines (CAFs) vs. normal lung fibroblasts (NFs).