Project description:Improvement of phosphorus (P) uptake by crops is a prerequisite for sustainable agriculture. Rice (Oryza sativa L.) PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) increases root growth and total P uptake. Here, a biogeographic survey of rice demonstrates OsPSTOL1 loss in a subset of japonica rice after the temperate-tropical split and frequent absence in paddy varieties of east Asia. OsPSTOL1 absence or loss-of-function alleles prevail in landraces from regions with fertilizer use and controlled irrigation, suggesting it is an adaptive genetic variant in low nutrient rainfed ecosystems. OsPSTOL1 is a truncated member of a family of multi-module kinases associated with microbial interactions. We demonstrate that ectopic expression of OsPSTOL1 in wheat (Triticum aestivum L.) increases shoot and root growth under low P conditions, promotes root plasticity, and hastens induction of the low P response pathway. OsPSTOL1’s influence on adaptive root development in wheat validates its potential for broad utilization in crop improvement.
Project description:Increasing global food production demands have resulted in increased fertilizer usage, causing detrimental environmental impacts. Biostimulants, such as humic substances, are currently being applied as a strategy to increase plant nutrient-use efficiency and minimize environmental impacts within cropping systems. Humalite is a unique, naturally occurring coal-like substance found in deposits across southern Alberta. These deposits contain exceptionally high ratios of humic acids (>70%) and micronutrients due to their unique freshwater depositional environment. Humalite has begun to be applied to fields by local growers in Alberta, despite limited scientific data on yield impacts across diverse crops. Recent work has shown positive impacts on plant growth, yield and nutrient usage in wheat plants supplemented with Humalite; however, there is little known of the impact of Humalite at the molecular level. Here, we report a quantitative proteomics approach to identify systems-level molecular changes induced by the addition of different Humalite application rates in field-grown wheat (Triticum aestivum L.) under three urea fertilizer application rates. In particular, we see wide-ranging protein abundance changes in proteins associated with several metabolic pathways and growth-related biological processes that suggest how Humalite modulates the plant molecular landscape. Our results provide new, functional information that will help better inform agricultural producers on optimal biostimulant and fertilizer usage.
Project description:Purpose: To understand the effects of two different chemical forms of iron fertilizer on cadmium accumulation Methods:Cultivation and treatment for three weeks of dwarf Polish wheat seedlings by hydroponics, in triplicate, qRT–PCR validation was performed using TaqMan and SYBR Green assays Results: Iron fertilizer can effectively reduce cadmium concentration in plants Conclusions: Our study represents the different chemical forms of iron fertilizer have different mitigation effects on cadmium. The transcriptome gata showed that iron fertilizer have changed the cadimium metabolism
Project description:Paddy rice with husk can be availbale for chicken dietary resource instead of yellow corn. Ingestion of paddy rice potentially affects on gastrointestinal physiology and function including digestion/absorption of nutrients and gut barrier function such as mucosal immunity, but the details of changes is unknown. To obtain insight into the physiological modifications in the small intestine of chickens fed paddy rice, we conducted a comprehensive analysis of gene expression in small intestine by DNA microarray. In the paddy rice group, a total of 120 genes were elevated >1.5-fold in the paddy rice group, whereas a total of 159 genes were diminished < 1.5-fold. Remarkably, the gene expression levels of IGHA (immunoglobulin heavy chain α), IGJ (immunoglobulin J chain), and IGLL1 (immunoglobulin light chain λ chain region), which constitute immunoglobulin A, decreased 3 to 10 times in the paddy rice group.