Project description:Transcriptional profiling of an HtrA proteases knock-out compared to wild type on two different time points; logarithmic growth phase and stationary growth phase
Project description:Transcriptional profiling of an HtrA proteases knock-out compared to wild type on two different time points; logarithmic growth phase and stationary growth phase 3 Biological replicates per time point, two arrays
Project description:We isolated suppressors of a ∆ddl mutant strain with constitutively active allelles of the vanS gene. VanS is a histidine kinase of a two-component system that regulates expression of the vanG operon. Transcriptomes of wild-type and ∆ddl vanS (R334L) strains were compared.
Project description:The response to iron limitation of several bacteria is regulated by the ferric uptake regulator (Fur). The Fur-regulated transcriptional, translational and metabolic networks of the Gram-positive, pathogen Clostridioides difficile were investigated by a combined RNA sequencing, proteomic, metabolomic and electron microscopy approach. At high iron conditions (760 g/l) the C. difficile fur mutant displayed a growth deficiency compared to wild type C. difficile cells. Several iron transporters were found induced by Fur regulation during low iron (11 g/l) conditions. The major adaptation to low iron conditions was observed for the central energy metabolism. Most ferredoxin-dependent amino acid fermentations were found significantly down regulated (had, etf, acd, grd, trx, bdc, hbd). The substrates of these pathways phenylalanine, leucine, glycine and some initial intermediates (phenylpyruvate, oxo-isocaproate, 3-hydroxy-butanoyl-CoA, crotonyl-CoA) were found accumulated, while some end product like isocaproate and butanoate were found reduced. Flavodoxin (fldX) formation and riboflavin biosynthesis (rib) were found enhanced, most likely to replace the missing ferredoxins. Proline reductase (prd), the corresponding ion pumping RNF complex (rnf) and the reaction product 5-aminovalerate were significantly enhanced. An ATP forming ATPase (atpCDGAHFEB,) of the F0F1-type was found induced while the formation of a V-type, mostly proton-pumping, ATP-consuming ATPase (atpDBAFCEKI, was decreased. The [Fe-S] enzyme-dependent pyruvate formate lyase (pfl), formate dehydrogenase (fdh) and hydrogenase (hyd) branch of glucose utilization and glycogen biosynthesis (glg) were significantly reduced, leading to an accumulation of glucose and pyruvate. The formation of [Fe-S] enzyme carbon monoxide dehydrogenase (coo) was inhibited. An intensive remodeling of the cell wall was observed most likely to increase antibiotic resistance. Polyamine biosynthesis (spe) was found induced leading to an accumulation of spermine, spermidine and putrescine. The fur mutant lost most of its flagella. Finally, the CRISPR/Cas and a prophage encoding operon were downregulated. Fur binding sites were found upstream of 20 of the regulated genes. Overall, adaptation to low iron conditions in C. difficile focused on an increase of iron import, significant decrease in metabolic iron utilization and protection during the complex transition.
Project description:The experiment intends to reveal the difference in gene expression profiles between the wild-type strain and the ∆rpoN mutant of Clostridioides difficile. We first constructed the ∆rpoN mutant, and the phenotypic changes of the ∆rpoN mutant against the wild-type strain were studied. To further elucidate the mechanism of phenotypic changes of the ∆rpoN mutant, RNA-sequencing experiments were carried out to reveal the underlying mechanism of phenotypic changes.
Project description:The experiment intends to reveal the difference in gene expression profiles between the wild-type strain and the ∆cwp66 mutant of Clostridioides difficile. We first constructed the ∆cwp66 mutant, and the phenotypic changes of the ∆cwp66 mutant against the wild-type strain were studied. To further elucidate the mechanism of phenotypic changes of the ∆cwp66 mutant, RNA-sequencing experiments were carried out to reveal the underlying mechanism of phenotypic changes.
Project description:We compared transcriptomes of wild-type and ∆vanS strains of Clostridioides difficile 630 growing in the presence or absence of peptidoglycan-targeting antibiotics, vancomycin or ramoplanin. VanS is a histidine kinase of a two-component system that regulates expression of the vancomycin-induced vanG operon.
Project description:Transcriptional profiling of the wild-type and its htrA mutant. Identification of genes that are affected by the htrA mutation in P. gingivalis Keywords: Genetic modification
Project description:The response to iron limitation of several bacteria is regulated by the ferric uptake regulator (Fur). The Fur-regulated transcriptional, translational and metabolic networks of the Gram-positive, pathogen Clostridioides difficile were investigated by a combined RNA sequencing, proteomic, metabolomic and electron microscopy approach. At high iron conditions (760 g/l) the C. difficile fur mutant displayed a growth deficiency compared to wild type C. difficile cells. Several iron transporters were found induced by Fur regulation during low iron (11 g/l) conditions. The major adaptation to low iron conditions was observed for the central energy metabolism. Most ferredoxin-dependent amino acid fermentations were found significantly down regulated (had, etf, acd, grd, trx, bdc, hbd). The substrates of these pathways phenylalanine, leucine, glycine and some initial intermediates (phenylpyruvate, oxo-isocaproate, 3-hydroxy-butanoyl-CoA, crotonyl-CoA) were found accumulated, while some end product like isocaproate and butanoate were found reduced. Flavodoxin (fldX) formation and riboflavin biosynthesis (rib) were found enhanced, most likely to replace the missing ferredoxins. Proline reductase (prd), the corresponding ion pumping RNF complex (rnf) and the reaction product 5-aminovalerate were significantly enhanced. An ATP forming ATPase (atpCDGAHFEB,) of the F0F1-type was found induced while the formation of a V-type, mostly proton-pumping, ATP-consuming ATPase (atpDBAFCEKI, was decreased. The [Fe-S] enzyme-dependent pyruvate formate lyase (pfl), formate dehydrogenase (fdh) and hydrogenase (hyd) branch of glucose utilization and glycogen biosynthesis (glg) were significantly reduced, leading to an accumulation of glucose and pyruvate. The formation of [Fe-S] enzyme carbon monoxide dehydrogenase (coo) was inhibited. An intensive remodeling of the cell wall was observed most likely to increase antibiotic resistance. Polyamine biosynthesis (spe) was found induced leading to an accumulation of spermine, spermidine and putrescine. The fur mutant lost most of its flagella. Finally, the CRISPR/Cas and a prophage encoding operon were downregulated. Fur binding sites were found upstream of 20 of the regulated genes. Overall, adaptation to low iron conditions in C. difficile focused on an increase of iron import, significant decrease in metabolic iron utilization and protection during the complex transition.