Project description:The widespread resistance of parasitic worms to commonly used anthelmintics highlights the urgent need for development of new effective chemicals. Arctigenin (ARC) is a natural lignin compound that exhibits excellent anthelminthic efficacy against infections of Gyrodactylus, but knowledge about the mechanism of action is far from clear. In the present study, high-throughput RNA-sequencing was integrated with iTRAQ quantitative proteomics analysis to explore the anthelmintic mechanism and possible molecular targets of ARC against Gyrodactylus kobayashii.
Project description:BackgroundGyrodactylus salaris is a monogenean, which has collapsed tens of wild Atlantic salmon populations. One of the means of preventing the spread of the parasite is the disinfection of the fishing equipment, which is used in the rivers having susceptible salmon populations. Little is known about the dosage of disinfectants against G. salaris. There are not standards for the testing of disinfectants against multicellular parasites. The present investigation developed a method to test disinfectants and examined the effectiveness of heated water and a commercially available disinfectant (Virkon S) in killing G. salaris. Individual G. salaris worms were followed under the microscope during treatment with heated water or Virkon S disinfectant blend. The logarithm of the time needed to kill the parasite was used as a dependent variable in linear regression. The upper 99.98 % prediction line for the dependent variable was used to obtain a value resembling the time needed for a 4 log reduction of the microbial pathogen, which is commonly used as a criterion for disinfectants. Also 6 log reduction was applied.ResultsExposure to a relatively low temperature was found to kill the parasite. Even 5-50 min treatment (=10-100 times the 99.98 % upper prediction value) with heated water at 40 °C might be used. This would enable the utilisation of hot tap water in the disinfection of fishing gear. The present practice of 1 % Virkon S for 15 min was also found to kill the parasite.ConclusionsThe follow-up of single parasites of a test population and the use of the calculated upper predictive line in the regression analysis offers a method to analyse the effects of disinfectants on parasites like G. salaris. The results of our tests give possibilities for using disinfection methods, which may be more acceptable by the fishermen than the present ones.
Project description:BackgroundGyrodactylus salaris Malmberg, 1957 is an OIE (Office International des Epizooties)-listed parasitic pathogen and had until the current study been reported from 19 countries across Europe, although many of these records require confirmation. The last comprehensive evaluation regarding the distribution of G. salaris, however, was made in 2007, although some of the states identified as being G. salaris-positive were ascribed this status based on misidentifications, on partial data resulting from either morphological or molecular tests, or from records that have not been revisited since their early reporting. It is thus important to go through the reports on G. salaris to obtain a status for each country.MethodsTo provide a revised update of the G. salaris distribution, a literature review was necessary. This literature, however, was not always readily accessible and, in certain cases, the article only made superficial reference to the parasite without providing details or data to support the identification. In most cases, the original specimens were not deposited in a national collection. Additional Gyrodactylus material for the current study was obtained from selected salmonid populations with the aim to contribute to current understanding regarding the distribution of G. salaris. Additional parasite material collected for this study was processed following standard procedures for species identification in Gyrodactylus [1].ResultsFrom the work conducted in the current study, G. salaris is reported from a further three regions in Italy, alongside three other species, and appears to occur extensively throughout central Italy without causing significant mortalities to its rainbow trout, Oncorhynchus mykiss (Walbaum), host. The analysis of archive material from G. salaris-positive farms would suggest that G. salaris has been in this country since at least 2000. Material obtained from rainbow trout from Finland and Germany are confirmed as G. salaris, supporting existing data for these countries. No specimens of G. salaris, however, were found in the additional Gyrodactylus material obtained from rainbow trout reared in Portugal and Spain. A morphologically similar species, Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel et Vigneulle, 1999, however, was found.ConclusionsFollowing the present review, Gyrodactylus salaris is reported from 23 out of 50 recognised states throughout Europe; only records from 14 of these states have been confirmed by either morphology and/or by an appropriate molecular test and are considered valid, while only nine of these records have been confirmed by a combination of both methods.