Project description:Universally accepted landmark stages are necessary to highlight key events in tomato reproductive development. In this study, we provide a description of floral and fruit development in a red-fruited closely related wild relative of tomato, Solanum pimpinellifolium accession LA1589. We use established and propose new landmarks as the framework for the characterization of the tomato fruit shape gene SUN in fruit development. SUN controls fruit shape predominantly after fertilization and its effect reaches a maximum at 8 days post anthesis coinciding with fruit landmark 4 representing the globular embryo stage of seed development. We also analyzed gene expression profiles of floral buds 10 days before anthesis (floral landmark 7), anthesis-stage flowers (floral landmark 10 and fruit landmark 1), and 5 days post anthesis fruit (fruit landmark 3). The expression profiles of the NILs that differ at sun showed that 34 genes were differentially expressed and most of them at a less than 2-fold difference. However, many genes were differentially expressed between the developmental times points, including many genes involved in phytohormone biosynthesis or signaling as well as organ identity and patterning of tomato fruit.
Project description:Versatile roles of REVOLUTA (REV), a Class III homeodomain-leucine zipper (HD-ZIP III) transcription factor, have been mainly depicted in Arabidopsis and Populus. In this study, we investigated the functions of its tomato homolog, namely SlREV. Over-expression of a microRNA166-resistant version of SlREV (35S::REVRis) not only resulted in vegetative abnormities such as curly leaves and fasciated stems, but also caused dramatic reproductive alterations including continuous production of flowers at pedicel abscission zone (AZ) and ectopic fruit formation on receptacles. Microscopic analysis showed that meristem-like structures continuously emerged out from the exodermises of pedicel AZs and ectopic carpels formed between the first and the second whorl of floral buds in 35S::REVRis plants. Therefore, we performed Illumina’s digital gene expression (DGE) system, a tag-based transcriptome sequencing methodTranscriptional data to dicover differential expressed genes in early buds (1-2 mm floral buds at stage 6-8) of overexpression line SlREVRis-1. The result suggests that SlREV may regulate genes related to meristem maintenance and cell differentiation in the development of flower pedicel abscission zone, and modulate genes in homodomain and MADS-box families and hormone pathways during fruit formation. These results reveal important roles of SlREV in tomato. 1-2 mm floral buds at stage 6-8 were sampled from three individual plants of 35S::REVRis-1 and corresponding WT control. Three aliquots of RNA from transgenic or WT plants were pooled. Then, the digital expression profile were generated by Illumina Cluster Station and Illumina HiSeq™ 2000 System (BGI Inc.).
Project description:Versatile roles of REVOLUTA (REV), a Class III homeodomain-leucine zipper (HD-ZIP III) transcription factor, have been mainly depicted in Arabidopsis and Populus. In this study, we investigated the functions of its tomato homolog, namely SlREV. Over-expression of a microRNA166-resistant version of SlREV (35S::REVRis) not only resulted in vegetative abnormities such as curly leaves and fasciated stems, but also caused dramatic reproductive alterations including continuous production of flowers at pedicel abscission zone (AZ) and ectopic fruit formation on receptacles. Microscopic analysis showed that meristem-like structures continuously emerged out from the exodermises of pedicel AZs and ectopic carpels formed between the first and the second whorl of floral buds in 35S::REVRis plants. Therefore, we performed Illumina’s digital gene expression (DGE) system, a tag-based transcriptome sequencing methodTranscriptional data to dicover differential expressed genes in early buds (1-2 mm floral buds at stage 6-8) of overexpression line SlREVRis-1. The result suggests that SlREV may regulate genes related to meristem maintenance and cell differentiation in the development of flower pedicel abscission zone, and modulate genes in homodomain and MADS-box families and hormone pathways during fruit formation. These results reveal important roles of SlREV in tomato.
Project description:This work aims to study the effect of the elevated CO2 concentration on the tomato plant response to the toxicity provoked by ammonium nutrition. Tomato plants (Solanum lycopersicum L. cv. Agora Hybrid F1, Vilmorin®) were grown for 4 week with 15 mM of nitrogen, supplied as nitrate or ammonium, at ambient or elevated CO2 conditions (400 ppm or 800 ppm). Transcription profiling by array was carried out in roots for the four growth conditions assayed and gene expression comparisons were done between N sources and CO2 conditions: i) genes differentially expressed in response to the atmospheric CO2 concentration (800 ppm vs 400 ppm CO2) under nitrate or ammonium nutrition; ii) genes differentially expressed in response to the N source (ammonium vs nitrate) under ambient or elevated condition. 3 biological replicates for each growth condition were analysed.CO2).
Project description:Universally accepted landmark stages are necessary to highlight key events in tomato reproductive development. In this study, we provide a description of floral and fruit development in a red-fruited closely related wild relative of tomato, Solanum pimpinellifolium accession LA1589. We use established and propose new landmarks as the framework for the characterization of the tomato fruit shape gene SUN in fruit development. SUN controls fruit shape predominantly after fertilization and its effect reaches a maximum at 8 days post anthesis coinciding with fruit landmark 4 representing the globular embryo stage of seed development. We also analyzed gene expression profiles of floral buds 10 days before anthesis (floral landmark 7), anthesis-stage flowers (floral landmark 10 and fruit landmark 1), and 5 days post anthesis fruit (fruit landmark 3). The expression profiles of the NILs that differ at sun showed that 34 genes were differentially expressed and most of them at a less than 2-fold difference. However, many genes were differentially expressed between the developmental times points, including many genes involved in phytohormone biosynthesis or signaling as well as organ identity and patterning of tomato fruit. Three biological replicates were conducted with three sets of LA1589 sun NILs that differ at sun growing during different time periods resulting in 3 time points x 2 genotypes x 3 replicates = 18 array hybridizations.
Project description:Purpose: To understand the molecular mechanisms involved in disease development during plant-nematode interactions. Methods: We have taken a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time points from susceptible plants (PR: Pusa Ruby) and two infection time points from resistant plants (M36: Transgenic MM line), grown under soil conditions. Results: Differentially expressed genes during susceptible (1827 tomato, 462 RKN) and resistance (25 tomato, 160 RKN) interactions were identified and a set of genes were validated by qRT-PCR. Conclusion: Our findings, for the first time, provide insights into the transcriptome dynamics of both tomato and RKN during susceptible and resistance interactions and reveal involvement of a complex network of biosynthetic pathways during disease development.
Project description:To characterize the PTI response of tomato and the effect of the delivery of a subset of effectors, we performed an RNA-seq analysis of tomato Rio Grande prf3 leaves challenged with either the flgII-28 peptide or the following bacterial strains: Agrobacterium tumefaciens GV2260, Pseudomonas fluorescens 55, Pseudomonas putida KT2440, Pseudomonas syringae pv. tomato (Pst) DC3000, Pst DC3000 deltahrcQ-U deltafliC and Pst DC3000 deltaavrPto deltaavrPtoB. NOTE: Samples in SRA were assigned the same sample accession. This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.